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Abstract 

Identifying ATT&CK® Tactics in Android Malware Control Flow Graph Through Graph 
Representation Learning and Interpretability. 

FAIRBANKS, JEFFREY (Northwest Nazarene University Department of Mathematics & 
Computer Science) 
 

Malware affects millions of machines, causing havoc to those it reaches. The dangers and negative 
impact that malware has inflicted push researchers to find a way to mitigate its effects. Labeling 
malware within the anti-malware services becomes a challenge in finding the correct Tactics, 
Techniques, and Procedures (TTP) that each malware implements. The Control Flow Graph (CFG) 
describes the structure of a program during its execution; this is how a program flows. In reference 
to malware, it represents the flow of all the internal and external function calls. The current 
research proposes a novel approach to locating ATT&CK® TTP in a CFG by applying Machine 
Learning Classifiers on Android Malware. Through these methods, the approach associates the 
TTP, given by the ATT&CK® Framework with a subgraph of an Android malware CFG. Using 
Graph Neural Network and SIR-GN node representation learning approach, this methodology 
processes the CFG and creates a model that classifies the associated TTP. Furthermore, the 
explanation technique SHapley Additive exPlanations (SHAP), a model agnostic game-theoretic 
approach to explain any machine learning model's output and identify the subgraph in the CFG 
connected with the specific TTP, is implemented. Preliminary experiments indicate approximately 
89% accuracy in classifying such techniques. 

Keywords  

Machine Learning, Tactics Techniques, and Procedures, Control Flow Graph, Android Malware, 
Graph Isomorphic Network, Random Forest Classifier, SHapley Additive exPlanations, Malware 
Analysis, MITRE ATT&CK®, Hybrid-Analysis Sandbox, SIR-GN 
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1 Introduction 
Malware results in substantial monetary damages, leading to loss of trust in a business and 

possibly crippling entire organizations. To mitigate these threats, one must have a deep 
understanding of malware and face the challenge of going against bad actors. With every new way 
to detect malware, there is equally a new way to avoid detection. This creates tensions between 
those seeking to mitigate threats and bad actors who wish to cause harm by promulgating malware. 
To facilitate a safer environment for those connected to the internet, this research turns to machine 
learning to help automatically detect techniques being used within Android Malware. Currently, 
no automated procedures can characterize, given the malware executable, what part of the 
execution flow relates to specific Tactics, Techniques, and Procedures (TTP) that the malware 
utilizes. This research provides an automation methodology to locate specific TTP in a sub-part of 
the Control Flow Graph that describes the execution flow of a malware executable. Finding the 
TTP that the malware implements allows for better mitigation, as the attack vectors of the malware 
can be clearly seen. This process is achieved through graphing malware by extracting its Control 
Flow Graph (CFG) and mapping it to the specific Tactics, Techniques, and Procedures the malware 
is using that are described through the MITRE ATT&CK® Framework [14].  
 

In Figure 1 below, the right subgraph, denoted by the red box enclosing it, correlates 
directly to a Tactic 'Impact' and the Technique 'Carrier Billing Fraud'. Also in the figure, the 
dashed-blue line correlates to the Tactic 'Collection' and the Technique 'Access Contact List'. 
These Tactics Techniques and Procedures (TTP) seen on the right come from the MITRE 
ATT&CK® Framework. 

 

 

 
The association of a specific TTP to the subgraph that it is contained in is important to better 
footprint malware and create better safeguards against malware in the future.  

Figure 1 

Each Subgraph maps to the specified TTP as determined by the color of the box surrounding it. 



 

2 
 

2 Background 
Several research papers have used a variety of methods to study the detection of malware 

by using graphs. Mehadi Hassen et al. have contributed to research in the area of malware 
classification using Neural Networks with their paper, Scalable Function Call Graph-based 
Malware Classification [13]. By using Machine Learning and a Control Flow Graph, they were 
able to correctly identify whether a given Android Malware was malicious. However, this research 
does not include the classification of which techniques are being used in the given malware or 
where these techniques are located within the Control Flow Graph. Similar work was also 
completed by Xin Hu et al. in their research, Large-Scale Malware Indexing Using Function-Call 
Graphs [27], as well as the work by Mojtaba et al. in their paper, Metamorphic Malware Detection 
using Control Flow Graph Mining [12]. While each of these research efforts has made strides in 
malware detection, the classification of malware through machine learning can be widely 
improved upon. 
 

MITRE ATT&CK® (Adversarial Tactics, Techniques, and Common Knowledge) [14] has 
labeled a number of popular malware families with their given TTP; however, it does not explain 
the location where the TTP exists in the Malware's CFG. MITRE has been essential in the 
development of this research as this organization has created a database of TTP, that is used to aid 
in classifying malware. With this given TTP, each malware can be given some subset of these TTP 
based on the CFG and the behavior of the malware, allowing for the labeling of the data. 
 

2.1 MITRE ATT&CK® 
MITRE ATT&CK® [14] is a globally accessible framework of adversary tactics and 

techniques based on real-world observations. ATT&CK® was developed in response to the 
challenge of defending against Advanced Persistent Threats (APT) and has led to several valuable 
research on the detection and classification of malware [2]. Through ATT&CK®, TTP is more 
easily detected because the TTP is readily available in the repository. The ATT&CK® framework 
is used as a foundation for the development of specific threat models and methodologies in the 
private sector, the government, and the cybersecurity product and service community. 
 
  The development of MITRE ATT&CK® has resulted in further research into TTP and 
malware. A. Georgiadou et al. have written a research paper, Assessing MITRE ATT&CK® Risk 
Using a Cyber-Security Culture Framework, where they use ATT&CK® to explore the 
organization of security procedures and the improvement of security risk comprehension [1]. This 
was accomplished through the analysis of associating a comprehensive set of organizational and 
individual culture factors while utilizing the MITRE ATT&CK® framework to map security 
vulnerabilities with specific adversary behaviors and patterns [1]. The MITRE ATT&CK® 
framework has also been utilized in the work described in Automated Threat Report Classification 
Over Multi-Source Data written by A. Gbadebo et al [6]. This research focuses on the extraction 
of adversary actions from threat report documents and automatically classifies them into tactics 
and techniques.  
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MITRE ATT&CK® is an ever adapting and expanding knowledge base for designing 
threat models. In the knowledge base, there are many different functionalities that benefit this 
research. First, ATT&CK® [14] highlights several popular malware classes, or Software, that 
contain a list of Tactics, Techniques and Procedures (TTP). It is important to note that malware 
tends to fall into groups of this software, called Malware Families. New malware makes slight 
modifications from the original version of itself in an attempt to thwart programs designed to 
protect against malware. ATT&CK® not only keeps track of groups of software but also tracks 
groups of malware developers. Furthermore, ATT&CK® labels each of these Malware Families 
with a set of TTP that are commonly seen. Given these TTP, researchers can understand the attack 
vectors employed. 
 

ATT&CK® has both enterprise and mobile-level TTP. In this research, the Mobile TTP is 
used. This mobile TTP contains information for Android and IOS devices. For the purposes of this 
research, the Android TTP is used. The TTP listed under the Mobile Section are the malicious 
actions that a malware undertakes to gain access to an Android device. These tactics include Initial 
Access, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access, 
Discovery, Lateral Movement, Collection, Command and Control, Exfiltration, and Impact. These 
are not all implemented within the samples that are collected through this research, and some are 
left out throughout the completion of the research project [15].  

2.2 Control Flow Graph 
A Control Flow Graph (CFG) gives the graphical representation of the structure of a 

program. This works by graphing the functions that the program calls as it executes. Through this 
method, one can better visualize what is happening inside the inner workings of the program, as 
well as determine how each function connects to one another. These functions can be external 
functions, such as API calls, or can be internal functions included in the packages that the 
developer adds into the workspace, which can also be the internal functions written by the 
programmer themselves. Furthermore, CFGs are helpful to show the Entry Block and Exit block 
of the code, allowing one to see where the code begins and ends; this aids in the reverse engineering 
of malware.  
 
  The use of CFGs in research involving malware is common, as CFGs are valuable to the 
visualization and understanding of how a program works. Guillaume Bonfante et al. have 
contributed to the work surrounding the use of CFGs in the detection of malware in their paper, 
Control Flow Graphs Malware Signatures in which they extract CFGs from malware and use it as 
signatures for malware detection. Another paper written by A. Kapoor et al., Control Flow Graph 
Based Multiclass Malware Detection Using Bi-normal Separation, uses bi-normal separation to 
detect malware [3]. This research was proposed to aid in the classification of malware into their 
malware families, as much of the research completed at that point focused purely on the detection 
of malware [3]. Another publication regarding CFGs in malware detection written by S. S. Anju 
et al, Malware Detection using Assembly Code and Control Flow Graph Optimization, presents a 
method of malware detection that is resilient to common obfuscation transformations [22]. 
Malware detection in their research is conducted by finding signatures of the malware to get the 
syntactic characteristics; however, small changes can be made to malware that makes this detection 
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method less effective. In their research, they focus on using syntactic and semantic features to 
detect malware by using CFGs, thus making it a more reliable malware detection method [22].  
 

 

 
  Figure 2 shows an example of a Control Flow Graph (CFG). Each CFG utilized in this 
research is a directed graph visualizing the flow of a program. The internal functions, whether they 
are written by the programmer or packages imported by the programmer, are denoted as a gray 
box with the name 'sub' with numbers following. The external functions, such as the Android API 
calls, are denoted as a light blue box. These API calls are calls that are made to the Android API 
library.  

One example of an API call is the call named "getDeclaredField()". This external API call 
returns a 'field' object for use within the flow of the program.  

3 Tool Selection  
After understanding the constraints and planning the outcomes of the research, the 

researcher explored tools to use in this novel approach to Graph-Based Malware Analysis. As the 
research progressed specific tools were implemented but then switched out with others that 
provided increased performance. Tools were selected based on the given criteria: 

 
● Cost 
● Documentation  
● API usability/availability 
● Ability to analyze malware dynamically or statically 

Figure 2 

A simple Control Flow Graph showing external API calls and internal calls 
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In the early stages, while conducting preliminary research, a few tools were found to be beneficial 
and were selected. The chosen pipeline was also selected because of the intent to conduct research 
on Windows Portable Executable (PE) malware. The first pipeline used early in the project can be 
seen in the Figure 3.  
 

 

 
In this pipeline, there are two main tools utilized to prepare the malware for classification. One 
tool allows for the parsing of the CFG, and the other tool performs analysis of the malware in a 
sandbox to provide ATT&CK® Tactics, Techniques and Procedures (TTP) that are implemented 
within the malware. The first tool, Angr [29], is a platform-agnostic binary analysis framework 
that conducts static analysis on Windows Portable Executable (PE) files. Hatching Triage Sandbox 
[31] is then used to analyze the binary executable sample and extract the ATT&CK® TTP that the 
malware implements.  
 

The utilization of conducting research on Windows PE malware quickly changed, as it was 
found that conducting research using static analysis tools such as Angr is less effective in rapidly 
evolutionary and dynamic threat space and can be argued as controversial within the scientific 
community [32]. Following this discovery, the project was altered to conduct research on Android 
malware in the form of .apk instead of Windows PE files. As this move was made, the tools 
previously used no longer conducted the proper analysis, and new tools had to be explored. For 
example, Angr [29], conducts exemplary static binary analysis on windows PE files, allowing for 
the formation of the CFG, but does not perform adequately on Android Malware. Angr is unable 
to create a CFG of an Android .apk file. In the same way, Hatching Triage Sandbox [31] does not 
return any information of the Tactics, Techniques and Procedures (TTP) being implemented for 
any given Android Malware. When a malware is sent into the sandbox, the hash is analyzed and 
the TTP that were previously assigned manually are returned. However, when using Hatching 
Triage Sandbox with Android Malware no TTP are assigned, as Hatching Triage Sandbox focuses 
solely on Windows malware.  
 

In the search for new tools that could handle analysis on Android executable (.apk) files, 
two new tools were found to be effective. Androguard [25] was adapted to begin the process of 
extracting Control Flow Graphs (CFG) from the Android .apk malware. Androguard runs best 
when on a Linux OS, thus a Linux box was set up for the purpose of extracting the CFG from each 

Figure 3 

The preliminary pipeline used to extract CFG and ATT&CK® TTP 
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of the thousands of Android Malware .apk. The search for a new Sandbox to retrieve ATT&CK® 
TTP that the Android Malware was implementing took some time, but ultimately Hybrid Analysis 
Sandbox [5] was utilized. Hybrid Analysis Sandbox is an Automated Malware Analysis and 
Sandbox tool powered by CrowdStrike's Falcon Sandbox. With this sandbox comes accessibility 
to a researcher's API. Hybrid Analysis can inspect the Android Malware executable (.apk file) and 
return information on which Tactics, Techniques and Procedures (TTP) are being implemented. 
 

The collection of malwares also had to be changed, as the number of samples acquired 
daily was insufficient and gave no real way of being sure that a sample was only acquired once 
and in the correct Android .apk form. In the preliminary investigation, while utilizing Windows 
PE malware, the collection process was done by scraping vxvault.net [30]. With the move to 
Android .apk malware and the need for better collection standards, VirusTotal [24] was utilized as 
a database for the collection of Android .apk files. Through VirusTotal, Android .apk files could 
be acquired and sorted by their SHA256 hashes, allowing for improved collection and database 
management. The following pipeline, seen in Figure 4, was then constructed, and used for the 
remainder of the project. 
 
 

 

 
 

4 Overview 
In this research, a novel approach is explored to Classify TTP within a Control Flow Graph and 
explain in which subgraph that TTP is contained. There are many processes that must be 
implemented to fulfill this research. The project can be conceptually divided into three 
implementation phases: Malware Data Collection, Malware Analysis, and Machine Learning / 
Explanation. 
 

Figure 4 

The final pipeline used to extract CFG and ATT&CK® TTP 
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The data collection phase is important to the completion of the rest of the project. Android 
executable malware was collected and cataloged into a database. After collection, a SHA256 hash 
was made, along with others, and stored as the name of the malware for easy handling of each 
specific malware. This data was then used in the next phase of the project. 
 

In the Malware Analysis Phase, the data was taken and given meaning in the context of 
this research. A Control Flow Graph (CFG) was made from the Android executable using the tool 
Androguard [25], and the executable was put through Hybrid-Analysis Sandbox [5] to extract the 
MITRE ATT&CK® Tactics, Techniques and Procedures (TTP) utilized within the malware 
executable. Furthermore, the type of malware and family associations were extracted for later use 
after classification and explanation had been completed. Finally, the TTP and the CFG are linked 
together and saved under the name of the specific Android Malware hash. This file was then sent 
to pre-processing to be given to the Machine Learning / Explanation Phase. 

 
 

Figure 5 

Overview of each part of the implementation 
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In the final phase of the research, the CFG and linked TTP are now cleaned and pre-processed, 
ready to be passed through the Machine Learning Classifiers. After classification, the leading 
results are chosen and passed onto the explanation. This part of the research explains in which 
subgraph of the entire CFG that a specific predicted TTP is contained. 

5 Data Collection and Analysis 
Data collection consists of binary, or executable, Android Malware in the form of an .apk file. The 
format of these files must be Android .apk to pull all the necessary information. There are 
complications to finding Android samples, as executable Malware samples are typically not 
available to the public. VirusTotal [24] is an application that allows for the acquisition and analysis 
of Malware samples. Through VirusTotal, the executable Android Malware is acquired, increasing 
the data set up to more than 8000 samples. These raw samples must then be in the proper format 
to be passed into the machine learning process. 
 

 

 
After the collection and cleaning of the data from VirusTotal, data is passed into Hybrid-Analysis 
Sandbox [5] to collect the ATT&CK® TTP. Many options for the sandbox did not include the 
information necessary to extract the TTP from the data. Hybrid-Analysis Sandbox [5], also known 
as Falcon Sandbox, allows the raw Android .apk executable samples to be passed in, and extracts 
the ATT&CK® TTP that the malware executable contains. The data collection proceeds in this 
manner for some time as the Researchers API only allows for 100 uploads to the sandbox every 
24 hours. Through the implementation of Hybrid-Analysis Sandbox, the TTP can be gathered. 

Figure 6 

Overview of the first phase of implementation 
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Lastly, the CFG is extracted from the collected samples by using AndroGuard [25] that extracts 
and creates the CFG from the Android .apk file. 

 

During the process of collecting data, a catalog is made to ensure that each sample is processed 
exactly once with no duplicates. This process is also helpful in ensuring the data consists of a graph 
and contains relevant information regarding the TTP before continuing to the machine learning 
process.  

5.1 Documenting Android API calls 
Where each node in the Control Flow Graph (CFG) is a function call, there must be a way to 
understand what each function call is completing, and specifically external API calls. This led to 
the development of a web crawler to grab the documentation for each Android API call. A python 
script was developed to crawl the Android API Documentation [4] [16]. By completing the task 
of gathering information and making it easily available during the explanation process, each API 
call and its purpose are cataloged.  
 
For example, in one node of the Control Flow Graph (CFG), an external API function call was 
made. This call was an android API call 'getDeclaredField()'. (see Figure 8) 
 

 
Using the Android API web crawler, this API call can be documented and explained to show the 
purpose of a specific API call. In this case, the API call made was to retrieve a 'field' object for the 
use of the malware. (see Figure 9) 
 

Figure 7 

The executables go through Hybrid Analysis Sandbox to extract the TTP. 

AndroGuard is used to extract the CFG. The TTP and CFG are paired and cataloged. 
   

 
Figure 8 

External API call "getDeclaredField" is called in this node of one CFG 
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This work is important in the explanation of each TTP within a Control Flow Graph as it helps 
validate the results. As each API call is documented, the problem does not lie in one single API 
call. It is only when these calls are made together that they form a subgraph within the CFG as the 
malware implements a certain TTP. For example, Finding an API call getDeclaredField() is not a 
problem in itself, but this coupled with other API calls can create a subgraph where the specific 
TTP “Discovery“ is being used. 

6 Machine Learning Experimentation 
After the data is collected, cleaned, processed, and cataloged, a Graph Isomorphic Neural Network 
(GIN), and a Graph Attention Neural Network (GAT), built from tools made available through 
PyTorch's Deep Graph Library [18], are used to begin the machine learning process. In addition 
to the Neural networks, Decision Tree Ensembles are also used to improve the results.  These 
include a Decision Tree, Random Forest, and ExtraTrees Classifier. Using the ATT&CK® TTP 
as labels, and the CFG as the input data, the Classifiers will return an F1 Score, which is the 
harmonic mean of the precision and recall, and the Accuracy Score, which is the number of correct 
labels predicted divided by the total number of labels used, of each model on a test set. After the 
completion of training and testing of the Classifiers, the explanation begins using the tool SHAP 
[11]. The implementation of SHAP gives insight into the model and returns a result showing which 
TTP is most important for each edge of the CFG and is further adapted to show in which subgraphs 
of the entire CFG where each TTP is predicted to be located. An overview of this pipeline is seen 
in Figure 10: 

Figure 9 

Explanation of the API call "getDeclaredField" 
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Through experimentation of the machine learning results, several observations have come to light 
regarding classification techniques, quantitative explanation, and qualitative explanation. 

6.1 Graph Neural Network Classification 
Graph Neural Networks (GNN) are one of the Machine Learning Classifiers used in this project 
for graph classification. With the data having both a Control Flow Graph (CFG) and Tactics, 
Techniques, and Procedures (TTP) that the Android Malware executable implements, this data is 
used as inputs into the GNN. Upon implementing Neural Networks, poor predictive performance 
was observed. Both Graph Attention (GAT) and Graph Isomorphic (GIN) Neural Network 
architectures were implemented. These are the best choices for this research specifically because 
of the graph-based classification implemented. GAT keeps graph structure through its 
classification strategy and GIN keeps node order intact, both of which are important for CFG 
classification. Each of these Neural Networks implemented hidden layers in their classification 
technique. The GIN implemented its hidden layers coupled with Multi-Layer Perceptron (MLP) 
layers, while the GAT was coupled with the hyperparameter “Number of Heads”.  
 

Figure 10 

Machine Learning phase 3 overview 
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6.2 Decision Tree Ensemble Classification Using SIR-GN 

A group of individual decision trees, called a Random Forest, can be used to classify and 
demonstrate the explainability of the machine learning model. Each tree predicts an outcome of 
the class, and the prediction that occurs most often among the Random Forest is the model's class 
prediction. With this Random Forest Classifier, the TTP is predicted to be in use or not for each 
CFG. The Random Forest Classifier used in this project is an adaption of the Scikit Learn 
Library's ExtraTrees Classifier. This Classifier implements a meta estimator that fits several 
randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and uses 
averaging to improve the predictive accuracy and control over-fitting [21]. To implement this 
classification technique using Scikit Learn ExtraTrees Classifier, the data had to be refitted 
through the implementation of SIR-GN node representation learning approach [9]. The vectorial 
representation of SIR-GN provides a procedure to create a unique graph representation 
technique.  Such techniques identify groups of nodes in a fixed number and each group contains 
nodes with similar vectorial representations. Given this set of groups the method creates a 
pseudo adjacency matrix working on the groups that, once flattened, represent the vectorial 
representation of the graph. Then, the vectorial representations of two graphs are comparable if 
the computation of the node representations and the definition of the groups of nodes or the 
pseudo adjacency matrices are identical for the two graphs [9]. To guarantee this property, this 
research uses inferential SIR-GN which is a procedure able to perform inferences and that is 
pretrained on a specific family of directed random graphs.  Note that since the groups are created 
based on structural similarities among the nodes, the graph representation is invariant under 
permutation of the nodes in the graph. This methodology assures a fast and comparable creation 
of graph vectorial representation. Once the vectorial representation of each graph is created, a 
standard machine learning model can be utilized to classify the presence of specific TTP. The 
main technique used is the ExtraTrees classification algorithm as this algorithm gives the best 
classification performance. It is important to note that Graph Neural Networks can achieve the 
same task. However, it is experimentally demonstrated that they do not perform as well as SIR-
GN. 
 

7 Classification Results 
The results given by the Classifiers can be seen in this section. Through the process of training and 
testing on multiple models, this research demonstrates the effectiveness of the novel approach of 
explaining the Tactics, Techniques, and Procedures (TTP) in a Control Flow Graph (CFG). The 
first approaches are done using Graph Neural Networks for classification. Through the completion 
of this research, there are a few different architectures that are used to find the maximum F1 Score 
and Accuracy. A Graph Isomorphic Neural Network (GIN) and Graph Attention Network (GAT) 
are implemented using an adaption of the Deep Graph Library implementation (DGL) [26]. DGL 
allows for the specific tuning and adjusting of specific parameters to allow for effective use on 
different datasets. Following these methods, a Decision Tree Ensemble and Regression approach 
are also taken to find an improved solution. 
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The first model used is a Graph Isomorphic Neural Network (GIN). This model is the first 
choice when conducting this research because of its unique ability to handle the node-order 
restriction in graph representations, as well as find the existence of specific subgraph patterns. The 
GIN results are not outstanding but are the first step in creating explanations on Android Malware 
CFG. The average results for classification using the GIN Classifier are shown in Table 1: 
 

 

 
The GIN Classifier can achieve only an average of 67% Accuracy and 63% F1 Score while 
classifying 3241 CFGs over 40 epochs. Each of the CFGs is batched into the model in groups of 
20 graphs. Batch size is one of the most important hyper-parameters to tune in modern deep 
learning systems, but too large of a batch size will lead to poor generalization [10]. Through the 
process of tuning these parameters, it is found that CFG batches of 20 provided some of the best 
results, allowing for a balance between computational time and number of nodes and edges per 
classification. The GIN implemented 5 Multi-Layer Perceptron (MLP) and GIN layers, with 50 
hidden layers. Many different layers are attempted to increase the F1 and Accuracy Scores but 
proved to perform the best with the aforementioned parameters. For instance, giving two examples, 
3 MLP and GIN layers were attempted and received only a 64% Accuracy score, whereas 7 MLP 
and GIN layers received only 61% Accuracy. Changing the Hidden Layers has minimal effect on 
the scores over the epochs. Furthermore, 'neighbor pooling type' is set to 'sum' and receives the 
highest results out of the three parameters of 'sum', 'mean', and 'max'. The GIN is set to return the 
score over each layer to perform at the highest F1 and Accuracy Scores. During the training phase 
using the GIN, the CFG is classified on a few different techniques. The first technique put through 
the classifier is the 'Initial Access' Technique. This performs an output of 57% Accuracy and has 
an F1 score of 72%. The rest of the TTP are fed through the GIN, resulting in the average scores 
previously mentioned. Table 2 is a breakdown for each of the TTP passed through the Neural 
Network: 
 
 
 
 
 

Figure 11 

After inputting the catalog into the Classifiers, the best scores must be determined. 
These scores will be used in the explanation phase. 

 

Table 1 

Average F1 and Accuracy Scores for the GIN classification 
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After receiving these results, a new architecture is used in order to find a solution that receives 
better scores. A Graph Attention Network (GAT) is a neural network architecture that operates 
on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of 
prior methods based on graph convolutions or their approximations [7]. With this new architecture 
in use, new average results are given in Table 3. 
 

 

 
The GAT Classifier is also given many trials with different parameters and hyper-parameters 
tweaked to adjust for the best Accuracy and F1 Score. The two main parameters that are adjusted 
to improve performance are the 'Hidden Dimensions' and the 'Number of Heads' parameters. With 
the GAT Classifier, each 'Head' specified will have a certain number of 'Hidden Dimensions' 
attached to it [8]. Ultimately, the 'Hidden Dimensions' and the 'Number of Heads' parameters make 
little difference in improving the model and do not make looking further into this implementation 
meaningful. Giving two examples, when the 'Number of Heads' are set to 40 and the 'Hidden 
Dimensions' are set to 20, the F1 and Accuracy Scores are 48.2% and 66.3% respectively. Giving 
the parameters a change to 'Number of Heads' set to 10 and the 'Hidden Dimensions’ set to 50 does 
little to change these metrics. Another important consideration worth mentioning is that the GAT 
is computationally more efficient than the GIN approach allowing for 80 epochs to be used instead 
of the 40 used in the GIN Classifier. Even with this computational advantage, the GAT did not 
perform adequately enough to continue onto the explanation. A breakdown of the performance for 
each TTP is seen in Table 4. 
 

Table 2 

GIN Neural network classification results for each TTP 

Table 3 

Average F1 and Accuracy Scores for the GAT Classifier 
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Both the architectures of the Graph Isomorphic Neural Network and Graph Attention Neural 
Network returned similar Accuracy Scores, having an average Accuracy of around 67%. The F1 
Scores, however, differed between the two architectures by almost 12%. To keep the 
computational cost down but still get accurate results of the classification for each TTP, the results 
of each specific TTP were completed on a subset of the entirety of the dataset.  
 

 

 
Furthermore, when conducting tests on each individual TTP (such as on the 'Lateral Movement' 
TTP, which has a frequency of 2.46%), many times the Neural Network Classifiers would fail to 
give Accuracy results above 50% or any relevant F1 score. These results are less than ideal and do 
not give confidence in returning accurate results when put through the subgraph explanation phase 
that is to follow; a new classification method is explored. 
 

Upon completion of the implementation of the Neural Networks, another approach is 
explored. Utilizing the dataset that is collected through this research, a Decision Tree Ensemble 
learning approach is feasible. There are a couple of preliminary models that are put into use; 
Decision Tree, Random Forest, and Extra Trees Classifiers are tested. These classifiers are given 
by SciKit learn Machine Learning Library and adapted for use in this research [28]. 
 

Table 4 

GAT Neural Network Classification results for each TTP 

Figure 12 

Average F1 Score and Accuracy for each Graph Neural Network 
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The first updated Machine Learning approach is done using a single Decision Tree. This is 
done to explore if using Decision Tree Ensemble and Regression approaches are feasible in 
returning accurate results needed for the explanation phase. As this test is done to explore the 
validity of using this learning approach, the default parameters are used on the Decision Tree. 
After confirming the results of the Decision Tree, and getting promising F1 Scores and Accuracy 
ratings, a Random Forest and Extra Trees Classifier are used. Each of these utilizes 1000 trees in 
their implementation and sets 'Class Weight' as balanced. This provides better results, as seen in 
Table 5.: 
 

 

 
The results given for the Decision Tree, Random Forest, and Extra Trees Classifiers perform well 
on the dataset. The Decision Tree using the default arguments proved that this learning approach 
is a valid approach and gave way to the use of the Random Forest and Extra Trees Classifiers. An 
advantage to this implementation is the time component to training and implementing models. 
These Classifiers can read in all the necessary data, train and test the model in around 1/15 of the 
time that it takes to train and test the Neural Network approaches. Having confirmation that this 
approach is successful, each of the TTP is passed through the classifiers. Below, there is a 
breakdown for each TTP passed through each Classifier. 
 
For this approach, unlike with the Graph Neural Networks, the full dataset is pushed through each 
TTP classification, as the computation time of the Decision Tree Ensemble is significantly faster. 
The values returned give the indication that using Decision Tree Ensemble Classifiers return much 
better results in classification and explanation than the Graph Neural Network approach. 
 

 

 

Table 5 

Average results for classification of each TTP 

Table 6 

Decision Tree Classification results for each TTP 
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Following the use of the Decision Tree, a Random Forest is put into use. With the parameters tuned 
to 1000 Decision Trees, and a balanced class weight, the Accuracy Score increased by an average 
of about 4%, and the F1 Score increased by an average of about 3% from the single Decision Tree 
Classification. 

 

 
The last Decision Tree ensemble that is used is the SciKit Learn ExtraTreesClassifier. This 
Classifier is used because the computational cost and execution time is faster. This algorithm saves 
time because it randomly chooses the split point and does not calculate the optimal one. Because 
of this unique property, some aspects of the classification results may improve [19] [20]. In this 
situation, the F1 and Accuracy scores improved by 3% and 4% respectively from the single 
Decision Tree Classifier. 

 

 
As was previously seen in Table 5, the distribution of each of the implemented Decision Tree 
Ensemble Classifiers is minimal. Being sure that no other method performs in a superior fashion, 
the last approach explored is the use of K-Nearest Neighbor (KNN) and Logistic Regression (LR) 
models. The KNN was used to estimate how likely the TTP is to be a member of one group or the 
other depending on what part of the CFG the TTP nearest to it are, whereas the Logistic Regression 
Classifier creates a model through regression analysis [23]. These two models were used to take a 
new approach separate from the Decision Tree Ensembles seen previously. After adapting the 

Table 7 

Random Forest Classification results for each TTP 

Table 8 

ExtraTrees Classification results for each TTP 
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models from SciKit Learn, these two models are put to test on the dataset and yield the following 
results: 
 

 

 
These results are like those seen in the Decision Tree Ensemble used previously. Each of the Graph 
Neural Network models begins classifying each TTP. The results are seen as follows: 
 
 

 

 
After implementing the K-Nearest Neighbor Classifier, the results are on par with what is seen 
with the Decision Tree Classifiers, but still not surpassing the results given by the Random Forest 
or ExtraTrees Classifier. The next Classifier, the Logistic Regression model, is now used for all 
the TTP. 

 

 

Table 9 

Average results for classification of each TTP 

Table 10 

K-Nearest Neighbor Classification results for each TTP 

Table 11 

Logistic Regression results for each TTP 
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For each of the Decision Tree Ensemble, KNN, and Regression Classifiers the averages tend to 
stay around the same values. This gives confidence that the data collected is adequate for an 
explanation following the classifications. 
 

 

KNN and Logistic regression models 
 
The results of the Random Forest Classifier and the ExtraTrees Classifier are closely related. The 
decision to move forward with the Explanation is between these two Classifiers. ExtraTrees 
Classifier is an excellent choice because it is computationally faster allowing for increased 
explanation performance. Considering all the Decision Tree Ensemble, KNN, and Logistic 
Regression Classifiers, the average F1 Score and Accuracy far surpass that of the Graph Neural 
Network Classifiers.  
 

 

 
With an overall average F1 Score of 90.8% and a returned accuracy of 87.1% given for each of 
the Decision Tree Ensemble, KNN and Logistic Regression Classifiers used, these scores give 
confirmation that explanations of the graphs are possible and feasible given the constraints. The 
scores in this average do allow for an effective explanation of the subgraphs.  
 

Figure 13 

Average F1 and Accuracy Scores Decision Tree Ensemble, 

Figure 14 

Average F1 and Accuracy Scores for graph Neural Network vs. Decision Tree Ensemble 



 

20 
 

The Random Forest and ExtraTrees Classifiers especially yield useful and accurate information 
superior to that of the Graph Neural Networks; thus, experimentation and explanation is pursued 
on these Classifiers, and specifically on the ExtraTrees Classifier. The depth of correct F1 and 
Accuracy Scores can be seen in the following Matrix. 
 

 

 
This Matrix demonstrates how well the model did on the dataset. In this case, the model used was 
the ExtraTrees Classifier, as this classifier will be used for the explanation to follow. Experiencing 
scores in this range is crucial to have effective and accurate explanations. 

8 Graph Explainability 
 

The interpretation and explainability of the machine learning model are necessary for the 
confirmation of results. The tool SHapley Additive exPlanations (SHAP) is used to explain the 
machine learning's predictions. The features of the model are assigned a value of importance for a 
certain prediction [11].  
 

After implementing and saving a model for each of the TTP classified by the ExtraTrees 
Classifier, the SHAP values are collected. The SHAP Values are an explanation of the model's 
decisions for each of the TTP. These SHAP values are then used to calculate the edge importance 
for every edge within the Control Flow Graph. For each of these edges, an edge value has been 
assigned by using the implementation given by Joaristi, M., & Serra, E. (2021), in their paper SIR-
GN: A Fast Structural Iterative Representation Learning Approach For Graph Nodes [9]. By 
taking the dot product of the SHAP Values and the edge values, the edge importance has been 
calculated for each edge of the Control Flow Graph. The Edge Importance is sent to a pickle file 
containing each specific edge in the CFG and the Edge Importance for each of the TTP. The Edge 
Importance is then able to explain in which subgraph the predicted TTP can be found. 

 
Graph data are not naturally processed through standard machine learning models. This research 
employs graph representation learning such as SIR-GN which produces a vectorial representation 
for each node. Given the vectorial representation of SIR-GN, it provides a procedure to create a 

Figure 15 

This matrix demonstrates the metrics given by the ExtraTrees Classification 
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unique graph representation. Performing qualitative analysis validates that all the API calls for 
each subgraph responsible for a TTP classification are related. This analysis shows that the API 
calls selected by this method are always logically related to the TTP definition.  
 
 

 

 
Above is a CFG of a malware executable utilizing the TTP “Initial Access”, for the malware with 

the SHA-256 hash 006c24ff3ea7248f01d615d882eb993b88e096772bfeb6840c0cdc 5527e0d97d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.2 shows the subgraph identification for the malware with the given SHA-256 value seen 
above. This demonstrates the subgraph where the TTP "Initial Access" was found inside of the 
entirety of the Control Flow Graph. 
 

Figure 16 

Control Flow graph utilizing TTP "Initial Access" 

Figure 17  

CFG subgraph where the TTP "Initial Access"  

is specifically being used 
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9 Data Statistics 
Several observations have been made through the analysis of the collected malware dataset. From 
the 3244 values of nodes and edges, the values most often seen are 60 nodes and 73 edges, which 
always occur together in this dataset. These values occur 1385 times within the malware samples. 
The minimum number of nodes and edges are the same in the dataset at 0, and the maximum 
number of nodes is 136993 and the maximum number of edges is 333854. These maximum values 
occur together in the collected malware samples. The average number of nodes in the dataset is 
5775.393, while the average number of edges is 12581.291. The growth rate of this dataset is 
graphed below.  
 

 

 
Through the collection of malware samples from VirusTotal, the frequency at which the TTP occur 
throughout the entire data set is found. There are certain TTP that are more efficient to use to train 
the machine learning classifier. The closer the tactic is to 50%, the better the results from the 
classifier because the data is balanced. Accurate results can still be achieved with data occurring 
around 80%, but there are TTP that do not come close to 50%, such as "Privilege Escalation" and 
"Command and Control". These tactics are omitted as they had less than 1% of overall use within 
the dataset. The graph below shows the seven TTP that were used in the classification and their 
percentage of use within the dataset. The frequency at which the malware tactics occur in a dataset 
is graphed in Figure 19.  
 

Figure 18 

The growth rate of nodes and edges seen within the CFG dataset 
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Conclusion 
The development of cybersecurity as a necessary field of study comes from the increasingly 

intertwined relationship people have with technology. One branch of cybersecurity is malware 
analysis, where one deciphers the technical jargon and behaviors of malware and develops it into 
something digestible for malware analysts. The identification of subgraphs in the Control Flow 
Graph of malware demonstrating the use of a specific TTP is an important task that facilitates the 
understanding of malware behavior and then its mitigation. Given the experimental results, this 
novel methodology of SIR-GN Classification outperforms, in terms of accuracy and F1-score, the 
capability of graph isomorphic networks and graph attention neural networks, and it provides CFG 
subgraphs that effectively characterize the malware behavior. This research provides an 
automation methodology to locate TTP in a sub-part of the control flow graph with about 89% 
accuracy and 92% F1 score. 

Future Work 
This research has currently been accepted for presentation and publication at the SigmaXi, 

AAAI, and IEEE BigData Conferences. Continued work is being performed, and more data is 
being passed through the SIR-GN classifiers to achieve greater scores. However, an additional 
method that can be used to classify malware is by using small, induced subgraphs called graphlets. 
Graphlets can be mapped onto a CFG by using their orbits, and then the malware can be detected 
and assigned to a specific malware family. One complication regarding graphlets is they are most 
efficient when they are small, essentially five or fewer nodes. CFG's can be rather large, so this 
creates a problem. Potentially, one can calculate the treewidth of the graph and use this as a bound 
for the graphlets to mitigate this issue.  
 

Figure 19 

The figure shows the frequency of each individual TTP 
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