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ABSTRACT 
 
Analysis of Spectral Reflectance and Separability of Vegetation for FireMAP. 
     BOWERMAN, MIKHAIL(Department of Mathematics and Computer Science), 
HAMILTON, DALE (Department of Mathematics and Computer Science) 
 
Wildland fires can be destructive to properties and dangerous to people in close proximity, with 
the cost of some large fires exceeding $1 billion. They are a threat to the economy, property, and 
the public safety. Wildfires are however an essential component for the ecology of many 
vegetation types and it is important to understand when fires are beneficial and when they are 
destructive. The goal of the Fire Monitoring and Assessment Platform (FireMAP) is to provide 
fire managers with the tools and knowledge for acquiring, analyzing, and managing hyper-
resolution imagery to map burn severity in a faster, safer, and more affordable manner than is 
currently possible. This will allow for quicker and more educated decisions on how to proceed 
with recovery after a wildland fire. 
The FireMAP Spectral Analysis focuses on vegetation common to Idaho and the Pacific 
Northwest as well as ash from post-burn sites. This effort investigated whether spectral 
reflectance can be utilized to differentiate between classes of vegetation and ash. Following 
spectral and statistical analysis, spectral separability of classes of ash and vegetation was 
discovered in the visible light range of the electromagnetic spectrum. With this information, fire 
severity and extent can be determined from hyper resolution imagery using machine learning 
classifiers focusing on the visible light spectrum. 
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Overview 

 
The purpose of this research is to determine if different types or classes of vegetation and 

ash produce varying spectral results when analyzed with a spectrometer. The vegetation samples 

in question are all native to Idaho and other parts of the Northwest. Using statistical analysis, the 

goal is to calculate if and where these spectral differences occur. This research is contributing to 

a larger project, FireMAP, with the goal of mapping extent and severity of wildfires. To map 

wildland fire severity, it is necessary to classify post-fire imagery into high severity, low 

severity, surface and canopy vegetation. These classes are white ash and black char, shrubs, 

herbaceous, coniferous, and deciduous. Using the machine learning algorithms to classify pixels 

based on their spectral reflectiveness requires establishing enough of a difference between the 

classes. This ensures that the classifiers will be able to differentiate between the classes based on 

each class’ spectral signature. After statistical analysis of the spectral data from each class, there 

was a detectable difference in the spectral reflectance between each class. This enables the 

machine learning classifiers to differentiate between the classes. 
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Background 
 

Because of the major threat that wildfires pose to areas in the western United States, 

wildland fire managers need a way to quickly and accurately understand the situation. The 

ultimate purpose of the FireMAP project is to equip managers with decision-making tools. What 

kind of vegetation was burned? What kind of vegetation surrounded the fire? FireMAP helps 

answer these questions by mapping post-fire effects, allowing recovery teams to determine the 

severity of large area fires. This also enables them to make decisions on how to proceed with 

rehabilitation of the burned area, as well as provides them with information on how to respond to 

an active fire. 

This specific part of the FireMAP project was quite distinct from the rest. Most other 

aspects of FireMAP dealt with coding and testing the system, but data collection was the first 

step. The data analysis was essentially the foundation upon which the machine learning classifier 

was built. However, it needed the proper parameters and data so that it could work the way it was 

intended. The goal was to ascertain this parametrical data to enable the classifiers to extract 

useful information from the data. 
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Collecting the Samples 
 
 The first order of business when starting up the research was knowing what vegetation in 

Idaho was native to the area or adequately common throughout the region that it would be 

important to have information about it. This was important because it was deemed necessary to 

have spectral data on vegetation that a wildland fire would be likely to encounter. This process 

took longer than planned. Along with several days of creating a list of ideal plant species to 

gather information on, there were meetings with local ecologists who offered input on what 

should be collected. Because of the numerous species of vegetation on campus, it was important 

to have a map of the campus and supplemental list of vegetative species. With this information, it 

became much easier to understand what trees on campus would be viable samples, due to their 

common occurrence in the Pacific Northwest. Several trees across campus are not native to 

Idaho or even the northwestern United States (US); many were brought in from other parts of the 

country or even outside of the country. Only abundant species of the northwest were really of 

interest. This stage would have taken much less time if there was adequate spectral data for a 

variety of species readily available. Unfortunately, there were no sufficient spectral libraries 

(databases with spectroscopic information) for ash and vegetation common to the northwest.   

 Most vegetation samples were collected within Idaho, typically on the campus of NNU or 

at the nearby Deer Flat National Wildlife Refuge (DFNWR). Because of the time it takes to get 

out to the refuge and a lack of knowledge of shrubs and grasses, it was in the best interest of the 

project to ask for help from personnel on the Deer Flat NWR. Sarah Hurt, a Field Botanist at the 

DFNWR, graciously offered her services to the project. She knew the layout of the refuge and 

the types of vegetation around it. Over 40 vegetation samples were collected from DFNWR, 

close to half of the total samples collected. Additional samples were also collected across 
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montane regions of southern Idaho, from the mesic Payette River watershed to the xeric Owyhee 

Mountains.  

Any vegetative samples collected outside of Idaho were found in Oregon. A few of them 

come from Banks, some were collected just east of Pendleton in the Blue Mountains, and the rest 

were found around Bend. The locations from which the vegetative samples were obtained are 

representative of the mesic and xeric ecosystems prevalent across the Pacific Northwest. 

Ash was another key component to this research. It was important that ash samples were 

collected so that the spectral library would contain information for post-burn analytics. Both 

black char and white ash samples were collected from multiple burn sites. Black char indicates 

where the fire did not completely combust, while white ash is indicative of higher burn severity 

(Hudak et al., 2013).  

Along with collecting and recording the vegetation or ash, it was imperative that the 

location of collection be recorded as well. Attributing samples with latitude and longitude, it was 

possible to have an exact location of where that vegetation or ash was collected. The collection 

was more than just grabbing a leaf or two. For trees, it was necessary to break, tear, or cut off a 

significant limb with enough needles or leaves for multiple samples. For grasses and shrubs, it 

was often a matter of just taking a handful of the vegetation and pulling it out of the ground. 

Collecting black char was fairly easy, as there were large deposits of charred vegetation all 

throughout a burned area. White ash was often rarer and more difficult to collect because it was 

so powdery, and it was too easy to accidentally collect black char with a white ash sample. It was 

important to take a sample of the vegetation that would be visible from directly above. The 

reason for this will be explained further on. 
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Spectral Analysis 
 
 After a piece of vegetation was cut and collected, the specimen was spectrally analyzed 

within 24 hours. Waiting any longer would likely lead to invalid results because of the loss of 

water by the leaves or needles. Water retention was very important for the retention of 

chlorophyll (Richardson, 2002). Coniferous samples had a longer viability period; the needles 

retain water much longer than the leaves of deciduous samples. It was discovered, however, that 

the viability period could be extended by at least 24 more hours if the sample was kept in damp, 

cool conditions after being cut. Samples were often held in a cooler with ice, and it worked quite 

well. 

 The purpose of the spectral analysis was to understand what range in the electromagnetic 

spectrum different classes of vegetation would produce different spectral results. It quickly 

became clear that the help of Dr. Jerry Harris would be needed to run the spectrometer in the 

Advanced Chemistry lab. It is a Cary 100 UV-Vis Spectrometer by Agilent Technologies. The 

spectral range of this spectrometer was 190 to 900 nanometers (nm) with a resolution of one nm. 

There was concern that this would not cover an adequate spectral extent; it would have been 

ideal to have a spectrometer with a range of about 300 to 1400 nm. This covers much more of the 

infrared spectrum, which initially seemed to be most important because it has generally shown 

promise for vegetative identification (Van Aardt, 2000). Fortunately, the UV-Vis spectrometer 

worked quite well, as subsequent analysis showed spectral separability between the classes 

within the spectral extent of the spectrometer.  

 Each sample of vegetation was analyzed three separate times (specimens) for the sake of 

consistency and accuracy. Each sample had to be calibrated to a baseline curve (zero 

reflectance). Figure 1 is an example of the results from a Boxelder sample collected on NNU’s 
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campus. The spectral values are recorded at each wavelength and saved automatically in a .csv 

file. It was then possible to create a line graph to visually represent the spectral curves for each 

sample. 

 

Figure 1 - Sample Reflectance Curve 

After several weeks of nonstop spectral analysis, there was finally enough sample data to 

create a respectable spectral library. The samples’ spectral results, such as found in Figure 1, were 

averaged among their respective vegetative or ash class. There were approximately 15 to 20 

samples of vegetation for each class (shrub, herbaceous, conifer, and deciduous). This created six 

separate average spectral curves, one for each class, including the black char and white ash 

classes. Figure 2 is the visual representation of these calculations.  
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Figure 2 - Mean Class Reflectance 

 As can be seen, there are six separate curves on this graph, one for each of the classes of 

interest. Black char and white ash stand out among the six classes. Black char has little 

reflectance, regardless of the wavelength. White ash takes a dip in reflectance around 250 nm, 

but begins to increase at a steady rate after 400 nm. The vegetative reflectance curves all have 

very similar peaks, valleys, and plateaus, with the deciduous and coniferous curves falling almost 

on top of each other across the spectrum. The shrub and herbaceous curves stay a bit above the 

deciduous and coniferous curves, but still take the same rises and dips. All the vegetative 

reflectance curves rise significantly around 700 nm. This is Red Edge, close to entering the Near-

Infrared spectrum. 

 It became quickly clear that vegetation was distinguishable from black char between 

about 350 and 900 nm and from white ash between 200 and 900 nm. White ash and vegetative 

reflectance values intersected in the Red Edge, but this did not lead to any issues in further 
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analysis. The tricky part was distinguishing between the vegetative classes. This was to be 

expected. Looking at Figure 2, it was noticed that most of the fluctuations in vegetative 

reflectance occurred between 400 and 700 nm. Interestingly enough, this separation happens in 

the visible light range of the spectrum. Theories started forming, but this was purely speculation. 

Statistical proof was needed to solidify any theories about how to proceed. 

Statistical Analysis 
 
 In order to calculate spectral separability, a statistical T-test had to be used. This T-test 

calculates a probability as to whether samples from two different populations (or classes) are 

statistically different at a given wavelength. With the spectrometer’s range from 190 to 900 nm 

and a measurement taken every five nm, there were 143 measurements taken for each specimen, 

their values 

R190, R195, R200,…R895, R900 

For each R-value, the T-test was used to calculate the difference in mean between the two 

classes. In a T-test, a null hypothesis is required. In this case, the null hypothesis states that there 

is not a significant enough difference between the reflectance values of Class 1 and Class 2, that 

any differences are only due to a matter of chance. A P-value is returned from each calculation, 

essentially determining this chance. A higher P-value means a greater probability that the 

difference is a matter of chance. The goal was to reject the null hypothesis, or confirming that 

there is a significant difference. This required low P-values, or low probabilities of chance 

differences. In order to do this, a significance level had to be chosen and compared to the P-

values for each wavelength. With the help of Dr. Jason Colwell from Northwest Nazarene 

University, a significance level of 0.1 was originally chosen. Anywhere that the P-values fell 
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below this significance level showed where differences in reflectance values were not a matter of 

chance.  

 

Figure 3 - T-test Curves 

Figure 3 displays each T-test’s P-value curve. Six tests were performed between the six 

classes. T-tests between the canopy fuels (conifer/deciduous) and ground fuels (shrub/herb) are 

not displayed; their results were inconclusive. Every curve in Figure 3 is below the significance 

level 0.1 between 450 nm and 700 nm, the visible light range of the spectrum. However, because 

0.1 is a rather high significance level (0.05 and 0.01 are much preferred in the scientific 

community), it was appropriate to drop the significance level. For the vegetative T-tests, the 

significance level was reduced to 0.05. This narrowed the results of acceptable P-values to the 

range of approximately 590 nm to 700 nm for the tests where only vegetative classes are 

compared. The significance level was reduced even further for the T-tests comparing black char 
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to another class. At 0.01, this new significance level displayed the most accurate P-values. The 

spectral ranges in which black char and vegetation are separable are about 420 to 650 nm and 

then 700 to 900 nm. Black char and white ash are spectrally separable across the board. In fact, 

their T-test curve is practically invisible because it rests so close to the x-axis in Figure 3. 

 This is a very good sign because differences are detectable, especially in the visible light 

spectrum for every T-test. Normal cameras are going to be just fine for taking pictures of an area 

of land for the classifier. Currently, there is not a demand for any UV or Infrared cameras. 

However, the curves are all dropping quite rapidly just beyond 700 nm, excluding the 

“Black/Veg” and “Black/White” T-tests because they are already so low. In fact, two of these 

curves drop back below 0.01 right at 900 nm. The top two T-test curves do not reach that point in 

this spectral range, but there is a chance that, beyond 900 nm, they drop back below the 0.05 

significance level, or possibly even below 0.01. If this is true, it would mean that all canopy fuels 

would be spectrally separable from ground fuels. The only way to test this theory, however, is 

with a spectrometer with a spectral range extending beyond 900 nm, which is near the beginning 

of the Infrared light range. Unfortunately, NNU is not in possession of such a spectrometer. This 

opens the door for future work. 

Building the Database 
 
 After getting most of the samples analyzed, storing the data became an urgent task. 

Unfortunately, due to some unforeseen technical problems and a mid-summer power outage, 

connecting to the CS server was impossible, let alone creating a database. So, instead of creating 

a DBMS (database management system) through the preferred MySQL Workbench, the DBMS 

was built in Microsoft Access. This was less than ideal for many reasons, one of which was the 

fact that Access has less functionality than desired, especially for this project. But it needed to be 
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done; the data needed to be stored somewhere if only temporarily. Figure 4 is the Entity 

Relationship Diagram of the database created in Access. 

 There are three tables in this database: Cutting, Sample, and Spectrum. The way in which 

the Access database is set up, it allows users to navigate rather easily to any data they are looking 

for. Every cutting contains three samples, and each sample has 710 wavelength and reflectance 

values. Figure 5 is a visual representation of this layout. As can be seen, it is a sort of hierarchy in 

terms of data location. A user can decide which wavelength(s) of which sample(s) of which 

cutting(s) he/she wants to view and then follow that path in reverse. This was the easiest way to 

store the data with Access. Now Cutting contains all of the metadata, or information about the 

data, such as Species or Cut Date. 

 

Figure 4 - Database Entity Relationship Diagram 
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Importing the data from the original .csv files into Access was a bit of a nuisance at first. 

Fortunately, it did not take much time to figure out a functional set of steps that made the files 

easy to import and without information that was not needed for the database. This was essentially 

an ETL (Extract Transform Load) process (Coronel, 2015). The data from each .csv file was 

extracted, manipulated, and loaded in to the Access database using multiple MySQL importation 

queries. After getting each file imported, another set of queries were needed to add the data from 

the file into the necessary tables of the DBMS. These queries are listed in Appendix B. 

Figure 6 is an example of what a typical .csv file contained. This is from a sample of 

Subalpine Fir. Figure 6 focuses on the data that was relevant to this project, specifically the 

sample IDs and their respective wavelength reflectance values. The Baseline 100%T and 

Baseline0%T headings are the calibration curves mentioned in the Spectral Analysis section of 

this paper. Their reflectance values are also contained in the .csv file. These are examples of data 

that is not necessary to the FireMAP project, so they needed to be removed during importation. 

Figure 7 is a snippet from the same .csv file. This figure represents all of the extra information 

that did not need to be inserted into the Access database. There were hundreds of lines of 

Figure 5 - Database Sample 
Figure 5 - Database Sample 
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information like this, but this information would not be important to the users, so it was not 

included. 

 

Figure 6 - Example .csv File 

 

 Building the DBMS was very much a learning experience. It offered a brief yet pleasant 

aspect to this part of the project. While most of the summer was spent with data collection and 

analytics, creating the DBMS provided a means of data storage. Currently, access to the DBMS 

is limited only to those associated with the FireMAP project, but it can be requested by 

contacting NNU’s Department of Mathematics and Computer Science. 

Figure 7 - Example Unnecessary Data from .csv File Figure 7 - Example Unnecssary Data from .csv File 
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Future Work 
 
 A great deal was accomplished last summer, but there is still much to be done. 

Specifically, three main tasks were completed. First, the collection of data needs to grow. This 

means continuing to go out into the field and obtaining more vegetation and ash samples. The 

spectral library is already the most comprehensive in the northwest, but why stop there? There is 

no harm in expanding it; in fact, growing would be very beneficial for NNU’s credentials and for 

fine-tuning the statistical analysis portion. The more samples involved in the statistical analysis, 

the more accurate the T-tests can be. Along with collection of sample data, metadata should be 

stored as well. A goal in FireMAP is to create an app that will enable metadata acquisition, 

including geographic coordinates, collection date, and even an image of the collection site. This 

application will interface with the database so that the metadata can quickly and easily be stored. 

 Second, with more samples being collected, someone will need to input the data into the 

DBMS. While this task is not time consuming, it is very important that it be done correctly so as 

not to compromise the rest of the data. Data security and integrity are incredibly important when 

dealing with data entry and management. This part does not necessarily need to be done by the 

same person involved with data collection. Ideally, someone experienced with databases should 

be the one to work on this task. 

 Third, as mentioned earlier, Microsoft Access is not the ideal software to use when 

building a DBMS. It would be convenient to have the data stored on a SQL server. Someone will 

need to convert Access data so that the database can be easily migrated onto the SQL server. 

Storing the data here will be much more convenient for the purposes of this project. It is a multi-

user platform so multiple people can access and manipulate data at the same time. Because of the 

nature of FireMAP, the extra functionality of a SQL server will be greatly beneficial. 
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 Even with the completion of these tasks, it is more than likely that new tasks and goals 

will arise. A project like this is never finished; there is always more information to add, more 

tools to implement, new features to include. It is an ongoing project that can continually be 

perfected. 
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Appendix A 
 
Standard Error.  
 Compute the standard error (SE) of the sampling distribution. 

SE = sqrt[ (s12/n1) + (s22/n2) ] 
 
where s1 is the standard deviation of sample 1, s2 is the standard deviation of sample 2, 
n1 is the size of sample 1, and n2 is the size of sample 2. 

 
Degrees of Freedom.  
 The degrees of freedom (DF) is: 

DF = (s12/n1 + s22/n2)2 / { [ (s12 / n1)2 / (n1 - 1) ] + [ (s22 / n2)2 / (n2 - 1) ] } 
 
If DF does not compute to an integer, round it off to the nearest whole number. Some 
texts suggest that the degrees of freedom can be approximated by the smaller of n1 - 1 
and n2 - 1; but the above formula gives better results. 

 
Test Statistic.  
 The test statistic is a t statistic (t) defined by the following equation. 

t = [ (x1 - x2) - d ] / SE 
 

where x1 is the mean of sample 1, x2 is the mean of sample 2, d is the hypothesized 
difference between population means, and SE is the standard error. 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Appendix B 
 
Inserting Metadata from .csv File into Access DBMS. 
 

INSERT INTO Cutting (CutID, Species, [Life Form], [Cut Date], Location, 

Latitude, Longitude, [Test Date], [Spectrometer User]) 

SELECT [Vegetation Metadata - Sheet1].ID, [Vegetation Metadata - 

Sheet1].[Cutting ID], [Vegetation Metadata - Sheet1].[Life Form], 

[Vegetation Metadata - Sheet1].[Cut Date], [Vegetation Metadata - 

Sheet1].Location, [Vegetation Metadata - Sheet1].Latitude, 

[Vegetation Metadata - Sheet1].Longitude, [Vegetation Metadata - 

Sheet1].[Test Date], [Vegetation Metadata - Sheet1].[Spectrometer 

User] 

FROM [Vegetation Metadata - Sheet1]; 

 

 

Removing Unnecessary Data from Imported .csv File. 
 
 DELETE * 

 FROM Conversion 

 WHERE Conversion.Wavelength Is Null; 

 

 

Creating a New Sample for a Cutting. 
 
 INSERT INTO Sample ( CutID, SampleID ) 

SELECT Cutting.CutID, 1 

FROM Cutting; 

 

 

Adding Reflectance Data into Spectrum for each Sample. 
 

INSERT INTO Spectrum (CutID, Wavelength, [Reflectance Value], SampleID) 

SELECT [Conversion].CutID, [Conversion].Wavelength, 

[Conversion].Reflectance1, 1 

FROM Conversion; 


