
 

 

 
 
 
 
 
 
 
 
 

NORTHWEST NAZARENE UNIVERSITY 










Stock Screener 
 

 

 

 

THESIS 
Submitted to the Department of Mathematics and Computer Science 

in partial fulfillment of the requirements  
for the degree of 

BACHELOR OF SCIENCE 
 

 
 
 

Kyle Lee Duncan 
2021 

  



 

 

 
THESIS 

Submitted to the Department of Mathematics and Computer Science 
in partial fulfillment of the requirements  

for the degree of 
BACHELOR OF SCIENCE  










Kyle Lee Duncan 
2021 

 
 
 
 
 

Stock Screener 
 
 

 
 

Author: ____________________________________________________________ 
  Kyle Duncan 
 
Approved: ____________________________________________________________ 

Kevin McCarty, Ph. D., Assistant Professor of Computer Science, 
Department of Mathematics and Computer Science, Faculty Advisor  

 
Approved: ____________________________________________________________ 
  Jennifer DePew. 
  Second Reader 
 
Approved: ____________________________________________________________ 
  Barry L. Myers, Ph.D., Chair, 

Department of Mathematics & Computer Science



 

iii 
 

 
ABSTRACT 

 
 
 
 
 
 
Creating a Stock Screener Application Utilizing Machine Learning for Ease of Scanning the 
Stock Market. 
 
DUNCAN, KYLE (Department of Mathematics and Computer Science), MCCARTY, DR. 
KEVIN (Department of Mathematics and Computer Science). 
 
The stock market is rapidly changing, most stock screeners or services allow for visualization of 
stock tickers using charts. These charts are used by stock traders to analyze tickers they are 
interested in; the issue is that a human can only adequately track a few charts at a time. The 
purpose of this application is to address this issue. Specifically, this project utilizes machine 
learning to aid in increasing a stock trader’s ability to analyze the stock market. The machine 
learning model used in the application was trained using a random forest classifier that utilizes 
historical data. Using an application programming interface from Polygon, the stock screener 
receives real-time stock quotes which are then prepared and classified by the probability of 
increasing or decreasing in value. The classified data is then displayed on the user interface in a 
heatmap, and updates as soon as new data is classified. Displaying the data as a heatmap allows 
for an intuitive way to quickly analyze many stock tickers. The result of this application is a real-
time stock screener tool that can be used to quickly visualize tickers and the probability of each 
ticker’s movement. 
  



 

iv 
 

Acknowledgments 
 

First, I would like to thank my girlfriend, Anna, my brother, Brandon, and my mother for 

constantly listening to me try to talk out any problem or ideas I had regarding the development of 

the Stock Screener throughout the summer. I would also like to thank my grandparents and the 

DePew family for allowing me to work remotely on this project from their homes when my 

home Internet when was not working and there was nowhere else to go due to the Covid-19 

pandemic. I would like to thank my professors, Dr. McCarty, and Dr. Hamilton. Without Dr. 

McCarty the stock screener would not exist as he provided all the necessary data to make the 

application possible and answered any questions I had very quickly. Dr. Hamilton was always 

available when I had any questions and was eager to give helpful feedback. Lastly, I would like 

to thank Jeffrey Fairbanks for helping me throughout with the development of the Stock Screener 

throughout the summer. 

  



 

v 
 

Table of Contents 

Title Page ………………………………………………………………………………………… i 

Signature Page …………………………………………………………………………………... ii 

Abstract …………………………………………………………………………………………. iii 

Acknowledgements ……………………………………………………………………………... iv 

Table of Contents ………………………………………………………………………………... v 

List of Figures …………………………………………………………………………………... vi 

Overview ………………………………………………………………………………………… 1 

Background ……………………………………………………………………………………… 1 

Exploration ………………………………………………………………………………………. 2 

Design …………………………………………………………………………………………… 3 

Implementation ………………………………………………………………………………….. 5 

Future Work ……………………………………………………………………………………... 9 

Conclusion ……………………………………………………………………………………... 10 

References ……………………………………………………………………………………… 12 

 

 

 



 

vi 
 

List of Figures 

1 – Startup State of Form ………………………………………………………………………... 4 

2 – Machine Learning Form State ………………………………………………………………. 4 

3 – Live Feed Display …………………………………………………………………………… 5 

4 – Model Building Query Results ……………………………………………………………… 6 

5 – Heatmap ………………………………………………………………………………..…..... 8 

6 – Web App Prototype: Heatmap ……………………………………………………………..... 9



 

1 
 

Introduction 

 The primary goal of this project was to create a system within an application that enables 

users to easily view and analyze stock data utilizing the implementation of machine learning. 

The purpose of developing this system was to utilize a data pipeline to streamline the training 

process for the random forest machine learning model used in the application. The secondary 

goal was to obtain and display stock data as close to real-time as possible. This means that the 

application needed to be able to predict and display these predictions asynchronously to the user 

interface as quickly as possible to approach this goal and to minimize the amount of time the 

user can interact with the user interface. Overall, the objective was to create the application with 

these goals in mind and to build out a working application that serves as a prototype that can be 

expanded upon in the future. 

Background 

 This project was part of a summer research team at Northwest Nazarene University 

(NNU) working on utilizing computer science with data from the stock market, whose goal was 

to explore the use of machine learning with this stock data in the form of a Widows based 

desktop application similar to a traditional stock screener. A stock screener is a tool used by 

traders and investors to separate stocks depending on the user-defined metrics or view stock data 

(Vineeth). 

 To effectively develop machine learning models, we needed a lot of data for a model to 

be reliable and realistic, as the stock market contains a massive amount of data. Thankfully, Dr. 

McCarty had provided a large database of stock data consisting of minute, hourly, daily, weekly, 

monthly, quarterly, and yearly stock quotes for over the last twenty years. The database was kept 

up to date by Dr. McCarty throughout development, ensuring that we always had the latest data 



 

2 
 

available to us. 

 Dr. McCarty also provided us with an API (application programming interface) called 

Polygon to obtain current stock data to use in our application. Polygon is a service that provides 

snapshots of the stock market in HTTP responses after sending an HTTP request to the API 

using proper credentials. A snapshot is a collection of a large number of stocks and their current 

status, including attributes such as the stock’s open, high, low, close, and volume at the time in 

which the request was sent. 

 The Stock Screener application utilizes both the Polygon API and database containing a 

history of previous stock quotes, both provided by Dr. McCarty. These provided resources 

served as the source of the Stock Screener’s data. It is important to note that the United States 

stock market operates from Monday through Friday from 9:30am to 4:00pm eastern standard 

time. 

Exploration 
 
 When starting the development of the project, Dr. McCarty mentioned that he wanted the 

application to be a Windows based desktop application created using the C# programming 

language as he had already worked on his own small prototype using C#. There were several 

frameworks to choose from when deciding how to build a Windows desktop app. The three 

frameworks we narrowed our options to was Windows Forms (WinForms), Windows 

Presentation Foundation (WPF), and Universal Windows Platform (UWP). There are advantages 

and disadvantages to each option, but after looking into each framework, we ultimately decided 

that it would be best to use WinForms. Dr. McCarty’s prototype was already made in WinForms 

and he was familiar with the framework which made the development of the app in WinForms 

much easier than the development would have been in the other two frameworks. 



 

3 
 

 The next major decision we had to make was which language we wanted to use for 

machine learning in the application. At the beginning stages of development Microsoft had just 

released a library for machine learning in .NET (C#) called ML.NET which we tested but 

decided not to use for our project due to the lack of documentation at the time we started the 

project. The next language we investigated implementing was the R programming language. The 

problem with R was how long it took to create and export models when we started using the 

large datasets necessary for the application. When using R, the app would take a full day to train 

and export models after making as many optimizations as we could, proving to be inefficient. 

Finally, we decided to explore using the Python programming language and the SciKit-Learn 

library. Python quickly proved to be a much more efficient option, building models and 

exporting them in only a few hours at first. The result yielded the entire system of obtaining the 

data from Dr. McCarty’s database, creating the model, and serializing and exporting the model, 

taking less than an hour. Overall, Python proved to be the best fit for the application at the time 

that we began developing the machine learning system for the application. 

Design 

 The main purpose of the Stock Screener was to focus on the backend systems that drive 

the application. Therefore, we decided to keep the user interface as simple as possible while still 

including all the necessary features supported by the backend. To keep the application simple, 

we decided to use a single form for the entirety of the user interface. Initially, we tried to 

separate components into multiple forms, however, this approach was unnecessary and resulted 

in performance issues. Due to the application needing to be able to handle working at near real-

time the single form proved to be the best option for the performance requirements necessary. 



 

4 
 

 

Figure 1 – Startup State of Form 

The initial state of the form on startup was designed to be in a “default” state, meaning 

that no options are selected on startup, allowing the user to select what they desire. The default 

state of the Stock Screener would run with real-time stock quotes and display them to the user in 

the live feed table. The purpose of designing the initial state of the form this way was to allow 

users that have used a stock screener before to open the application to a more familiar, standard 

stock screener, displaying a snapshot of the stock market every time the API is called.  

 

Figure 2 – Machine Learning Form State 



 

5 
 

The alternate state from the default state of the form is the machine learning state. The 

machine learning state is activated when the user checks the “Run with ML” checkbox on the 

user interface. The purpose of the machine learning state is to allow the user to run predictions 

on snapshots of the stock market and view the resulting predictions in a form of a heatmap.  

Implementation 

 Being that the main goal of the project was to explore the use of machine learning with 

stock data, implementing a way to obtain the data was our first priority. To obtain real-time stock 

data we decided to use the Polygon API, which allowed us to capture data from almost 9000 

different stocks every time an HTTP request was sent to the API. The API would send back a 

JSON (JavaScript Object Notation) response that we then deserialized into a list of objects and 

displayed to the live feed table. 

 

Figure 3 – Live Feed Display 

After successfully implementing a system to obtain and display stock data, we moved on 

to implementing machine learning into the application. To start we needed a way to obtain data 

to build our model. After discussing with Dr. McCarty, we decided it would be best to use only a 

sample of the database minute data, using 4% of the previous month’s minute data, to avoid 



 

6 
 

overtraining the model. While 4% may not sound like much, 4% of the last month’s minute data 

is over 1.6 million rows of data. Before sampling 4% of the data, we used a query on the 

previous month’s data that returned discrete values and a label for us to be able to use the data in 

a model. Our label we selected was a Boolean value indicating whether a stock increased or 

decreased in value in the next minute. The other attributes we used were if the stock’s volume 

and value increased or decreased in value from the previous minute, as well as if the volume of 

the stock is currently above the stock’s 50-day average volume. This was in no means meant to 

be a viable trading strategy, but instead to serve as a starting point for machine learning with 

stock data as determined by Dr. McCarty. 

 

Figure 4 – Model Building Query Results 

 After obtaining the data to use with our machine learning model, we needed to implement 

a Python script to train a model using this data. We chose to write a Python scripts so that the 

script could be executed from within the C# application by running the script in an Anaconda 

environment. To train a model, we used Sci-Kit Learn’s random forest classifier. A random 

forest classifier is an ensemble that contains multiple classifiers, in this case decision tree 

classifiers, and is generated using a random selection of attributes at each node to determine the 

split. During classification, each tree votes and the most popular class is returned (Russell & 

Norvig). After creating a model, at the end of the script the model was serialized and exported as 



 

7 
 

a SAV file. 

 The final piece of the machine learning system was to implement a script that loads the 

saved serialized model, deserializes it, and then can be used to make predictions with unlabeled 

stock data. The stock data received by the script comes from the main application. As discussed 

above, the main application uses HTTP request to receive a snapshot of the stock market 

containing data for almost 9000 different stocks. This data is then prepared for use with our 

model using a function that evaluates the snapshot, using the same metrics as the SQL query, and 

outputs a CSV (comma separated values) file in the correct format for the prediction script to 

ingest and run predictions. When the prediction script makes predictions, the predictions consist 

of predicting the probability that a stock will increase in value in the next minute. The output of 

the prediction script is a CSV file containing tuples. These tuples consist of the stock symbol, 

increase probability, and decrease probability. This CSV file is then consumed by the main 

application, which converts the predictions into a list of objects. 

 After implementing the prediction script, it was time to implement a way to display the 

predictions to the user interface. Utilizing a table with two tabs, a tab for the stocks with the 

highest probability of increasing in value and another for the stocks with the highest probability 

of decreasing in value, the predictions were displayed to the user interface as a heatmap. Table 

cells indicating the probability were then colored using a gradient to represent a simple heatmap 

visual. The green gradient ranging from light green to dark green was used in the increasing 

probability table, where the darker the green the higher the probability of a stock increasing in 

value; the same concept was implemented for the decrease table using a red gradient. 

 While this system was implemented using multiple programming languages, our final 

choice, Python, proved to be much more efficient. The previous iterations of the machine 



 

8 
 

learning system were slow, which is why we chose to use Python. The initial implementation of 

the system took only three hours to train a model, a significant improvement and one that we 

deemed acceptable, as the models only needed to be trained once a week and could be run during 

the weekend when the stock market was inactive. However, with some modifications, we were 

able to achieve a training time from anywhere between 30-40 minutes, a massive improvement 

from the initial implementation. Using this model to make predictions, the results were displayed 

on the frontend as a heatmap in which the 100 stocks with the highest probability of increasing in 

value were displayed and the 100 stocks with the lowest probability of increasing in value were 

displayed. 

 

Figure 5 – Heatmap 

Now that all the core components were implemented, there remained one major issue. 

The user interface was unresponsive when running either machine learning or displaying data to 

the user interface. To fix this, the current system needed to be implemented to use asynchronous 

programming. With the use of asynchronous programming, the user can still interact with the 

application while the user interface is being updated. This was one of the goals of the project, 

allowing the user to interact with the data with minimal to no interference. 

When receiving a snapshot, the deserialized data is now displayed by triggering an event 



 

9 
 

associated to a delegate. A delegate is a type that represents references to methods with a 

particular parameter list and return type (Wagner). Delegates were used to display the live feed 

and machine learning predictions to the user interface and automatically continuously update 

these tables. By changing the application to be asynchronous, this also allowed the user to now 

stop the application whenever they desire, whereas before the user would have to wait for the 

user interface to update or the Python script to finish running. 

Future Work 
 
 There are many directions that can be taken to improve this project in the future. The first 

step that I would recommend would be to improve the user interface. Since the initial goal of the 

project was to make a Windows application, I think it would be beneficial to convert the project 

to the WPF framework. Another option for the user interface would be to completely start over 

and develop the Stock Screener as a web-based application. Below is a prototype of a web-based 

application I worked on using React Javascript.

 

Figure 6 – Web App Prototype: Heatmap 

  Besides the many possibilities for the Stock Screener’s user interface improvements, an 



 

10 
 

area that I would like to make further improvements to is machine learning. By using more 

complex trading strategies and incorporating techniques such as testing the statistical 

significance of the predictions, a more robust model could be trained and utilized. A final 

suggestion I have for future work would be to improve the heatmap and live feed tables. 

Conclusion 
 
 Overall, this project was fun and very difficult. When I started this project, I had no 

experience with the C# programming language, WinForms, and the R programming language, 

and minimal experience with Python. While I was not new to the concepts of machine learning 

or artificial intelligence upon starting the project, I had very little knowledge about the stock 

market, let alone applying machine learning to stock data. This presented many challenges 

throughout the development of the Stock Screener application. Learning these languages and 

learning about the stock market was time consuming and frustrating at times. The scope of this 

project changed a lot throughout development. The original plan for the project was to use 

reinforcement learning to create a bot to trade stocks; however, given that there was no existing 

application to even acquire stock data or a system to train and utilize machine learning or 

artificial intelligence, the scope of the project quickly shifted to accomplish that issue. There 

were many times where I went down paths that led to dead ends and slowed development but 

aided in the learning process. 

 Many of the courses I have taken at Northwest Nazarene University were applied to this 

project, from machine learning to operating systems, databases, and computer networking. All 

these courses aided in my understanding of different components of this project as I moved 

along. Understanding how an API works, connecting and querying a remote database, and 

threading were some of the most important concepts I learned and implemented into this project. 



 

11 
 

 Dr. McCarty was very helpful throughout the development of the Stock Screener. I am 

thankful for his help and for providing me with this project as I learned many useful things from 

developing an application. Being able to work with a team, meet deadlines, and attend meetings 

was a great experience that has carried over into my current internship, as have the skills I 

learned while developing this application. 

While the Stock Screener is far from complete, it serves as a starting point for anyone to 

pick up and continue. There are many possibilities for further modifications or development of 

the Stock Screener, which is what motivated me and excited me through the entire development 

of the application. I am excited to see what future students can accomplish if they choose to 

expand on this project. 

 
  



 

12 
 

References 

Russell, S. and Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice Hall, 

Upper Saddle River, NJ. 

SciKit (2021). Syncfusion Essential Windows Forms Documentation. Retrieved March 31, 2021, 

from https://help.syncfusion.com/windowsforms/overview.  

Syncfusion (2021). Syncfusion Essential Windows Forms Documentation. Retrieved March 31, 

2021, from https://help.syncfusion.com/windowsforms/overview.  

Vineeth. (2021). Stock Screener. Retrieved March 31, 2021, from 

https://cleartax.in/g/terms/stock-

screener#:~:text=Stock%20screeners%20are%20a%20tool,popular%20trading%20platfor

ms%20and%20websites.  

Wagner, B. (2021). C# documentation. Retrieved March 31, 2021, from 

https://docs.microsoft.com/en-us/dotnet/csharp/. 

 


		kmccarty@nnu.edu, jldepew@gmail.com, Barry Myers <blmyers@nnu.edu>
	2021-05-06T19:40:28+0000
	jldepew@gmail.com: 46°15′28″N 119°54′40″W (1100.0 m),  Barry Myers: 43°34′23″N 116°35′53″W (6297.0 m)
	DocHub LLC 72ffbadd4b89fd0b3fbf853b635a1697a78e47c0
	Certify the signatures of kmccarty@nnu.edu, jldepew@gmail.com, Barry Myers <blmyers@nnu.edu>




