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ABSTRACT 
 
 
 
 

Identifying Prostate Cancer in Biopsy Images using a Support Vector Machine and  
Decision Tree. 
     MOXHAM, HANNAH (Department of Mathematics and Computer Science),  
     MYERS, DR. BARRY (Department of Mathematics and Computer Science). 
 
Prostate cancer is the second most common cancer in men. Its high five-year relative survival 
rate hinges on identification of the cancer, especially before it spreads. A negative misdiagnosis 
can be deadly, which creates need for a consistently accurate method of identification. This 
research sought to develop a computer vision software tool that, given a digital image of a 
stained prostate biopsy, locates any malignant glands present in the image. A three-step process 
was devised for this: first, run supervised machine learning classifiers to mark the key cellular 
structures that point to adenocarcinoma of the prostate—nuclei, nucleoli, and lumina. Second, 
analyze those structures for key traits such as size and clustering. Third, use these derived traits 
in a second round of classification to locate cancerous regions. A support vector machine and 
decision tree were used for step one with reasonable success—nuclei and lumina were found 
with high accuracy, but nucleoli identification was troublesome. Better accuracy than this is 
desired. Future work includes determining the value of continuing with this three-step method, 
and if so refining step one and completing steps two and three. Otherwise, a new classification 
algorithm such as a convolutional neural network will be investigated. 
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IDENTIFYING PROSTATE CANCER IN BIOPSY IMAGES USING A 
SUPPORT VECTOR MACHINE AND DECISION TREE 

 
BACKGROUND: PROSTATE CANCER 

 Cancer is an extremely serious disease of the early twenty-first century. More than one in 

three individuals living in the United States will be diagnosed with cancer during their lifetime 

(“Cancer Statistics”). Pathologists like Dr. Joseph Kronz dedicated hours each day to scouring 

slides of biopsy specimens under a microscope in search of cancerous cells. In his work, Dr 

Kronz sees an opportunity for improvement. Even the most expert pathologist will make 

mistakes and misdiagnose a case, but a software screening tool could help remedy this error. 

Such a tool could be used for pre-screening or post-screening, to point a pathologist in the 

direction of the right diagnosis. This is the motivation behind this project—improvement in 

accuracy of diagnosis—as cancer can only be beaten after it is first found. 

 This project focused on identifying acinar adenocarcinoma of the prostate, cancer in the 

epithelial cells of the small glands within the prostate (“Adenocarcinoma”), for three reasons. 

First, developing a prototype that addressing anything more than a narrow sample of cancers 

would be too much for a single project. Second, this type of prostate cancer is the specialty of 

collaborator Dr. Kronz, which allows for quick learning about the problem the tool must address. 

Third, prostate cancer is the second most common cancer in men (“Key Statistics for Prostate 

Cancer”), which gives many image samples for testing and many opportunities to improve 

diagnosis once there is a finished product. Prostate cancer may have a high five-year relative 

survival rate (“Survival Rates for Prostate Cancer”), but this is contingent on finding the cancer 

first. Even a small improvement in diagnosis accuracy offered by screening via software could 

make a huge difference in the life of an individual. 
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 The task Dr. Kronz faces of locating cancer under a microscope is a challenging one. The 

only way a program could successfully complete this task itself is if the programmer has a decent 

understanding of the process, thus the need to work closely with Dr. Kronz and learn from him. 

Figure 1 is an example of what the pathologist or screening tool is first presented with, a cross-

section of a needle-core biopsy of a prostate.  

 

Figure 1 - Image A, a prostate biopsy 

Figure 2 gives a labeled subsection of Figure 1 detailing the cellular anatomy. The prostate gland 

itself contains many small gland openings that secrete prostate fluid. The tube running through 

one of these glands, seen as a circular or irregularly-shaped opening in the biopsy cross-section, 

is a lumen (plural lumina). Like any cells, those making up the other epithelial layer of the gland 

contain cytoplasm and a nucleus (plural nuclei). The nucleolus (plural nucleoli), when visible, 

can be seen as a darker dot inside the nucleus. Since this project is targeting cancer in the 

epithelial tissue of the glands, the nuclei, nucleoli, and lumina are the most important to examine. 
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Stroma, the supporting connective tissue filling the space between glands (“Stroma”), is not of 

interest for this kind of cancer. H&E (haematoxylin and eosin) staining is used to color the 

biopsy and bring out the details. The base-like haematoxylin reacts with basophilic structures 

like nuclei and nucleoli to dye them blue-purple, and the acid-like eosin reacts with acidophilic 

structures such as the stroma, dying them red-pink (Parry).  

 

Figure 2 - Important cellular structures labeled 

While there are more exceptions than rules when it comes to something as complicated as 

cancer, there are a few guiding principles that point an examiner towards their diagnosis. A 

healthy, benign gland will have many small nuclei around a large, irregularly shaped lumen. A 

cancerous gland will have large, round nuclei with easily visible nucleoli surrounding smaller 

lumina closer to a circle in shape. The more the cancer progresses, the more the healthy lumen 

breaks down into small lumina bubbles. In Figure 3, benign glands are outlined in green; the rest 

of the image is high-grade cancer 
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Figure 3 - Benign versus malignant 

BACKGROUND: MACHINE LEARNING 

 Given how complicated the cancer identification process is and how much of it relies on 

trained human intelligence rather than strict logic, machine learning stood out as the method of 

choice to underly the screening tool. Machine learning is a subset of artificial intelligence that 

allows a program to perform its processing through observing and analyzing patterns rather than 

following explicit instructions (Team). The program “learns” the patterns and acts on them with 

minimal guidance, which is ideal for modeling a human thought process. Within machine 

learning, there are two categories: supervised and unsupervised learning. The first is best for 

cases in which the desired classifications (such as benign and malignant) are known, while the 

second is best for uncovering new inferences and correlations (Soni). With the clear project goal 

of identifying cancer, supervised learning was the best choice. Supervised learning works by first 

training the classifier using training data that contains labeled examples of the classes it must 

identify. One class may be labeled “benign” and the other “malignant.” The algorithm behind the 

classifier allows the program to learn the traits that make an object one class or the other and 
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determine a method of sorting objects into their classes. Classifications can be binary (sorting 

into two classes) or ternary (sorting into three or more classes). 

 When classifying images, the input can be taken two ways. Either the whole image is 

treated as an object to classify, with the pixels making up millions of data points about the 

object, or each individual pixel is treated as an object to classify, with the red-green-blue (RGB) 

color intensity values making up the data points about the object. The latter method of one pixel 

at a time was used for this project. In this case, training data looks like a list of pixels, some 

labeled Class 1 and some labeled Class 0. Class 1 could be “malignant” while Class 0 is 

“benign,” or any other desired labels. Any number of math-based algorithms could be used to 

analyze the training data and create a quick means of sorting objects into classes. The classifier 

then receives an input image it has never seen before and classifies each pixel based on 

guidelines extracted from the training data, recoloring those put in Class 1 as white and those put 

in Class 0 as black. The new black-and-white image becomes the output. An example of this can 

be seen in Figure 4. 

 

Figure 4 - Binary classification of nuclei (white) 

 While the output may look pretty, its accuracy is of greater importance. The classification 

is compared against validation data, created by a human manually labeling a set of objects, in 

this case pixels, as Class 1 or Class 0. Accuracy is computed using a confusion matrix, which 
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includes information on how a predicted class was correct or wrong rather than simply whether it 

was right or wrong. This results in four categories for a binary classification—true positives, 

Class 1 pixels classified as Class 1; true negatives, Class 0 pixels classified as Class 0; false 

positives, Class 0 pixels classified as Class 1; and false negatives, Class 1 pixels classified as 

Class 0. Accuracy is the number correct—true positives and negatives—out of the total pixels 

listed in the validation data. The extra information of how a classification was wrong or right can 

be crucial. Sometimes a false negative is much worse than a false positive. In the realm of 

cancer, a false negative, a misdiagnosis of an individual as cancer free, can be deadly.  

ALGORITHM SELECTION 

 There are many machine learning algorithms to choose from to make up the backbone of 

the screening tool. After some exploration, the options were narrowed down to two paths: the 

SVM or the CNN. The SVM path includes a suite of classifiers from previous years of research 

on the FireMAP project, such as the k-nearest neighbors (kNN), support vector machine (SVM), 

and the Iterative Dicotomizer 3 (ID3), also called a decision tree. While FireMAP’s goal was to 

use classifiers to determine the burn severity and extent of wildland fires (Hamilton, D. and A. 

Van Aardt), machine learning classifiers have wonderful flexibility—all it takes is new training 

data to start working on a new problem. Classifiers initially intended for wildland fire analysis 

are full of potential for cancer diagnosis. While these classifiers have the advantage of already 

being implemented and have proven their worth with successful results for FireMAP, there is 

doubt about their ability to handle the complexity of cancer. These classifiers all take pixels as 

input rather than the image. A pixel is essentially a dot of color. Color is enough to distinguish 

burnt terrain (black) from unburnt terrain (brown or green) easily, but cancer is much more 

complex than color. There is not enough information contained in an RGB pixel to distinguish 

between a benign pixel and a malignant pixel. The SVM path would require a more sophisticated 
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method of identifying cancer than simply training the classifiers on benign versus malignant 

pixels. 

 The convolution neural network (CNN) is a promising alternative to the pixel-based 

classifiers from FireMAP. This algorithm is particularly useful for the problem of computer 

vision, teaching computers to “see” and identify objects in a picture like a human eye (Saha). 

Unlike an SVM or decision tree, a CNN take a whole image, twelve million pixels in the case of 

a biopsy image, as a single input. Through a complex series of matrix operations, key features of 

the image are preserved while the rest is compacted into a much smaller data set. This smaller set 

is run through a neural network, another type of classifier like the SVM, to produce the final 

classification of the image as a whole—cancer or no cancer. Through the convolutional matrix 

operations that work on many pixels at once, a CNN “looks” at the image on a larger scale than 

the SVM, allowing it to identify objects, such as a car, cat or malignant nucleus. While highly 

suited for object identification, CNNs requires a multitude of images to use for training data 

(Saha). It must be fed thousands of pictures of malignant and benign glands to learn the 

difference, and the collection of images sourced from Dr. Kronz round out to about two hundred. 

While the SVM and similar classifiers are pixel-based, which is a large handicap, this can be 

dealt with using creative workarounds. No amount of creative programming will produce more 

unique images to train a CNN. This was the biggest factor in the final decision to use the 

FireMAP suite.  

 Knowing that pixel-based classification of the FireMAP suite would not be enough by 

itself to identify cancer, a process of classification and analysis was devised. There are three 

steps to this process: (1) identify key structures, (2) analyze key structures, and (3) classify on 

new attributes. First, the classifiers are used to mark out the key structures for identifying cancer: 
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the nuclei, nucleoli, and lumina. Nuclei are clearly purple, and lumina are clearly white, while 

nucleoli are clearly darker than the surrounding nucleus. With a little help from texture metrics 

on the last structure, to be discussed later, all of these are within the realm of classification a 

pixel at a time. Second, once the key structures are found and labeled correspondingly, they are 

analyzed for traits important for identifying cancer, such as size and location relative to each 

other. After this step, a pixel will be tied to information such as type of structure, structure size 

and relative clustering as well as its RGB color intensities. In the third step, the newly derived 

attributes are run through a classifier again, this time trained on benign versus malignant, to give 

the final verdict on whether the biopsy contains cancer or not. 

DEVELOPMENT: NORMALIZATION 

 With the problem defined, the algorithms selected, and a path sketched from the first 

input to the final output, the development work began. Before jumping into step one of 

classifying the key cellular structures, there was a small matter to deal with. Not all biopsy 

images have the same color palette, as seen in Figure 5. This is due to changes in illumination of 

the microscope and variation due to staining. Too much variation can ruin a classifier’s output. 

The classifiers are trained using one image—this is what it expects to “see” and classify. 

Anything too far outside the range of the training data is a wild card that the classifier may or 

may not classify correctly. One way to deal with this is by minimizing the variation between 

images using normalization. This pre-processes the image before handing it to the classifier, 

shifting the range of values of the input image to match those of the training image. Min-max 

normalization was used, with is described by the formula in Figure 6, where value-old is the 

value to be normalized, min-old is the minimum value of the original range, max-old is the 

maximum of the original range, with min-new and max-new similar but for the new range. 

Improvement in accuracies due to normalization will be discussed in later sections. 
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Figure 5 - Min-max normalization formula (Han, Jiawei et al) 

 

Figure 6 - Differences in lighting using images A and F 

Accuracy tests for normalization also helped narrow down which of the many classifiers in the 

FireMAP suite is best suited for cancer diagnosis. There are a number of algorithms available 

from FireMAP: a decision tree, kNN, and SVM with three different kernels—chi-squared, RBF, 

and linear. (Kernels are mathematical transformations used on the training data to help improve 

classification in an SVM (Afonja)). All in all, this results in five classifiers to use. Normalization 

results eliminated the linear kernel from the list. While the decision tree, SVM-Chi2, and SVM-

RBF were consistent in their accuracy, the SVM-Linear was not; while it was generally similar 

in accuracy to the others, it would too often have inexplicably lower or higher accuracy in some 

cases. Given this volatility, it was knocked from the running of best FireMAP classifier for 

prostate cancer.  

DEVELOPMENT: NUCLEI AND LUMINA 

 Since the nuclei in the images are significantly more purple than the rest of the image, the 

classifiers had little trouble accurately classifying them. A denoise tool from the FireMAP suite 
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was used on the binary classification images to clean them up. Figure 4 is repeated below as an 

example of nucleus classification with 93.88% accuracy.  

 

Figure 4 repeated - Binary classification of nuclei 

With how stable nucleus accuracy was, it made for a good standard to run another comparison 

test between the FireMAP classifiers. Figure 7 shows the results of this test, in which accuracy of 

the five classifiers was averaged across three different sets of training data. At about twenty 

percentage points lower, it was clear that the kNN would not be useful, so it was dropped from 

the testing. The remaining three—decision tree, SVM-Chi2, and SVM-RBF, were comparable in 

accuracy throughout the project, so no more classifiers were dropped. 

 

Figure 7 - A test of average accuracies for nucleus classification 

 Like the nuclei, lumina have a clear color difference when compared to the rest of the 

image. They take on the off-white color of the slide background. As a result, the accurate 

classification of the lumina was easy to achieve with all three of the classifiers. The denoise tool 

was run again to clean the image. An example with 94.26% accuracy is shown below in Figure 8. 

With two of three key cell structures located, work began on the final structure—nucleoli. 

 

 

DecTree SVM-Chi2 SVM-RBF kNN

94.887 90.3394 91.6487 70.0455
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Figure 8 - Binary classification of lumina 

DEVELOPMENT: NUCLEOLI 

 Nucleolus classification proved much more difficult than lumen and nucleus 

classification. While nuclei and lumina are distinct colors compared to the rest of the image, the 

nucleoli are not. Like the nucleus, they are purple. A simple classification based on classes of 

“nucleolus” and “other” ended up being a second means of classifying nuclei. To the human eye, 

a nucleolus is identified by being a darker spot within a nucleus. As accurate nucleus 

classifications were already on hand, the search area can be limited to pixels already marked 

“nucleus.” The problem becomes locating a darker spot, which is a relative term. Knowing 

whether a pixel is darker requires looking at the pixels around it, which requires more than the 

basic RGB values of a single pixel. This is where texture comes into play. 

 Texture is a spatial metric computed for a center pixel using values of pixels around it. A 

pixel in the middle of a solid color object will have a different texture value than one in the 

middle of a grassy area. This allows something the human eye would subjectively describe as 

jagged, soft, coarse, etc to be vaguely represented as numerical value, something more useful to 

a program. Different kinds of texture metrics exist, using different math behind the calculation of 

the value (Gogul09). Texture was used in FireMAP to increase accuracy of classification 

(Hamilton, D. et al), which suggested that texture may be useful for the cancer diagnosis project. 



12 

Specifically, it may help with finding nucleoli, since texture is based on looking at the pixels 

around the one in question, and a nucleolus is visually identified by being darker than the pixels 

around it.  

 The texture generation tool for FireMAP was pulled out of the suite and run on the 

original image to create a second, gray-scale texture image, with the gray color value of the pixel 

in the texture image representing the texture value of the corresponding pixel in the original 

image (see Figure 9) Then, both the original image and the texture image were fed into the SVM 

and decision tree trained on nucleolus versus nucleus. The improvement in accuracy was 

minimal, however. Even testing six different kinds of texture proved unhelpful. Examination of 

the texture image revealed that there was no distinct difference where the nucleoli were located 

in the texture image that the classifier would be able to leverage. 

 

Figure 9 - FireMAP texture example 

 While the specific implementation of texture generation used in FireMAP did not aid in 

classification of nucleoli, the idea of texture still had potential. A new texture metric was 

developed from scratch, based on the idea of contrast. By treating pixels as vectors, the 

difference between them can be found, also as a vector. The length of that vector can represent 

the magnitude of difference between the color of the two pixels—a larger number indicates a 

larger change in color. If the center pixel in question is in a nucleolus, then stepping a few pixels 

to any direction should be outside the nucleolus, part of the regular nucleus. If the center pixel in 
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question is in the regular nucleus, then stepping a few pixels to any direction should still be in 

the nucleus—at most one of those directions will land inside the nucleolus and averaging the 

differences of all four directions will minimize the difference between the center nucleus pixel 

and side nucleolus pixel. Using the contrast vector formula described above should result in a 

larger texture value for the center pixel in the nucleus, which has a change from dark purple to 

light purple in four directions, than the texture value of a center pixel in the nucleus, which has 

one change if that from dark purple to light purple. With this idea laying the groundwork, a new 

texture generation tool was developed. Figure 10 gives an example of the texture image output 

by this new, contrast-based texture. 

 

Figure 10 - Contrast-based texture 

Here, visibly lighter dots in the texture image correspond the nucleoli in the original image, 

meaning this texture did find the nucleoli; but, there are also many other light-colored shapes that 

do not correspond to any nucleoli. The classifier would often find the nucleoli, as well as a lot of 

other junk. Thankfully, denoising was able to eliminate the junk on the principle that nucleoli are 

fairly small and take up maybe 15% of a nucleus, while the junk is larger and takes up greater 

than 15% of the nucleus. 

 While the classifiers were able to find nucleoli now, whereas using no texture or the 

FireMAP texture resulted in nothing, the accuracy was not high. It was between 60% and 70% 

on most cases. Another way to improve upon nucleoli classification was devised. Previously, the 



14 

contrast of color in pixels had been looked at in a single dimension—the RGB values were 

converted to grayscale. Looking at red, green, and blue contrasts separately would provide more 

information about the contrast, perhaps useful information. One of the areas that the contrast-

based texture was catching as junk, that the classifiers were then misclassifying, was the edge of 

the nucleus, a change from light purple to pink. The only change that the texture needed to catch 

was dark purple to light purple, the sign of a nucleolus. While these changes looked similar in 

grayscale, they look different in color. From pink to purple has higher changes in the red and 

blue values than green, but from purple to dark purple has similar changes in all colors. The 

texture generating tool was modified to perform its calculations on the red, green, and blue 

values separately rather than combining them into a single gray value. This resulted in a texture 

image like that of Figure 11, which does not look like much to the human eye, but close 

examination reveals faint, dark colors. This color image was then fed into the classifier, without 

the original image, to produce a nucleoli classification. The improvement in accuracy will be 

discussed in the upcoming results section. 

 

Figure 11 - Contrast-based texture in color 

RESULTS: FINAL PROCESS 

 Many steps made up the process of identifying key structures, completed using a variety 

of programs and tools. A batch file was used to run each program in series through the command 

line interface. First, the input image was normalized (Figure 13). Then the nucleus and lumen 
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classifications were created using the SVM-Chi2 and denoised (Figures 14, 15). A colored 

texture image was generated and used to classify the nucleoli on top of the nuclei classification, 

creating an image with white nuclei and red nucleoli on a black background (shown zoomed in in 

Figure 16). This was also denoised. Finally, the classification images were merged into a single 

image, with lumina bright green, nuclei as red, and nucleoli as blue, with the rest black (Figures 

17, 18). Accuracy calculations for nuclei, lumina, and nucleoli individually were also run as part 

of the batch file.  

 
Figure 12 - Original 

 
Figure 13 - Normalized 

 
Figure 14 - Nuclei 

 
Figure 15 - Lumina 
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Figure 16 - Nucleoli (zoomed) 

 
Figure 17 - Final (zoomed) 

 
 
 
 

 

 

Figure 18 - Final classification image 
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RESULTS: ACCURACY 

 While there were many comparisons in accuracy between classifiers and different tweaks 

in classification methods—texture or no texture for classifying lumina, a new math trick in 

texture generation—only the most significant of those are presented here. The rest can be found 

in Appendix C. Figure 19 presents these in a single table, each number representing a single test, 

while Figure 20 summarizes the results through averaging.  

 

Figure 19 - Accuracy results 

 

Figure 20 - Accuracy averages 

 The average accuracy across all categories (nuclei, lumina, and nucleoli) without 

normalization is 76.14%. With normalization, the average is 86.27%, about 10% higher. This is a 

Image Structure Normalized Regular SVM-Chi2 SVM-RBF DecTree Gray Color

Nuclei 96.0432 95.3237 93.8849

Lumina n/a n/a 97.0865 97.0009 94.2588

Nucleoli 84.6154 80.7692 76.9231 57.6923 84.615

Nuclei 92.1405 75.7525 97.8896 91.1371 92.1405

Lumina 97.6789 95.9381 90.9091 95.3578 97.6789

Nucleoli 74.7664 57.9439 74.7664 73.8318 53.2710 51.4019 74.7664

Nuclei 88.0841 86.6822 73.5981 74.5327 88.0841

Lumina 99.8022 99.9011 96.8348 96.3403 99.8022

Nucleoli 43.5897 46.1538 43.5897 41.0256 43.5897 46.1538 43.5897

Nuclei 98.8959 98.7382 64.0379 69.5584 98.8959

Lumina 96.1390 96.9112 93.6293 94.4015 96.1390

Nucleoli 60.6061 57.5758 60.6061 63.6364 46.9697 53.0303 60.6061

Nuclei 97.0740 93.4596 66.7814 74.5267 97.0740

Lumina 99.8802 99.8802 97.4850 97.6048 99.8802

Nucleoli 78.2609 71.7391 78.2609 80.4348 39.1304 65.2174 78.2609

Nuclei 98.3095 66.7100 54.4863 64.8895 98.3095

Lumina 98.5959 44.7737 98.5959 98.4399 98.5959

Nucleoli 70.3125 50.0000 70.3125 65.6250 70.3125 35.9375 70.3125

D

E

F

Normalization Classifier Texture

A

B

C

Structure Normalized Regular SVM-Chi2 SVM-RBF DecTree Gray Color

Nuclei 94.9008 84.2685 75.4728 78.3280 94.7315

Lumina 98.4192 87.4809 95.7568 96.5242 97.7258

Nucleoli 65.5071 56.6825 68.6918 67.5538 55.0327 51.5722 68.69177

Classifier TextureNormalization
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significant increase. Looking closely at the numbers, it can be seen in some cases that 

normalization did not improve accuracy by much, even lowered it in some cases (Images C, D), 

but in other cases, such as Image F, normalization was incredibly important. Images C and D are 

very similar in lighting to Image A, the training image, while Image F is significantly darker (see 

Appendix A). This explains the variance in how normalization affects accuracy. 

 The average accuracy using gray texture to find nucleoli is 51.57%. Accuracy this low is 

not much better than flipping a coin and marking a nucleolus present if the coin turns up heads. 

The average accuracy using color texture is 68.69%, a significant improvement, but still far from 

the ideal 90-percentile range.  

 Of the three classifiers primarily used throughout the project, the decision tree, SVM-

Chi2, and SVM-RBF, none showed significantly greater aptitude across all areas, but on specific 

structures, some did better than others. The decision tree was about 20% better than both kernels 

of the SVM on nucleus classification. All three did well in lumina classification. The SVM 

kernels were about 13% better than the decision tree at finding nucleoli, but rounding out at 67-

68% themselves, the accuracy in finding nucleoli is not very good. This fairly low accuracy is 

like a weak link in the chain: the other two steps in the cancer identification process are 

dependent on the first of finding the key structures. Errors as significant as 30% incorrect 

classification will propagate through the whole process. While it may be decreased as the 

accurate nucleus and lumen classification is considered, that 30% error could throw off the final 

output of cancer or no cancer significantly. Unless this nucleolus classification can be improved, 

the outlook for the three-step method using SVM and decision tree is bleak. 

FUTURE WORK 

 There is a lot of future work left for this project. While a 10%, 13%, 20% difference in 

accuracy seems clearly significant, it would be best to run formal statistical significance tests to 
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determine that they truly are or are not. This will strengthen the conclusions of the results 

concerning normalization, classifiers, and texture. This is only a small issue compared to a much 

bigger decision that needs to be made—whether or not to stick with the FireMAP suite for the 

main processing power of this project. The inaccuracy of nucleoli classification will drag the 

total accuracy of the final diagnosis down. While there may be more methods and innovations 

that can improve an SVM’s ability to locate nucleoli, there seems to be a much better option that 

does not require programming acrobatics—the CNN. CNNs are made for object detection and 

computer vision. While it may be possible to get the accuracy required with an SVM, this is like 

digging a trench with a spoon instead of a shovel. There are simply better tools. If the FireMAP 

suite is abandoned in favor of the CNN, future work will involve development, training, and 

testing of the CNN. If development continues with the FireMAP suite, future work involves 

improving nucleolus classification, but also moving onto the second and third steps – analyzing 

key cell structures and classifying on new attributes. While the exact path to a prostate cancer 

screening tool may be unknown, this project was a successful step in mapping out the wildlands 

of using computer vision to diagnose cancer. 
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APPENDICES 
 

Appendix A: Classified Images 
 
Image A (Nuclei: 93.8849%; Lumina: 94.2588%; Nucleoli: 84.6154%) 
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Image B (Nuclei: 92.1405%; Lumina: 97.6789%; Nucleoli: 74.7664%) 
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Image C (Nuclei: 88.0841%; Lumina: 99.8022%; Nucleoli: 43.5897%) 
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Image D (Nucleoli: 98.8959%; Lumina: 96.1390%; Nucleoli: 60.6061%) 
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Image E (Nuclei: 97.0740%; Lumina: 99.8802%; Nucleoli: 78.2609%) 
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Image F (Nuclei: 98.3095%; Lumina: 98.5959%; Nucleoli: 70.3125%) 
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Appendix B: Code 
 

 Batch file used to run full classification from Windows Command Prompt 
 

::STEP 0: DEFINE IMAGE NAMES 

SET imNucleusTrain="C:\Classified\Summer\Final\Train\9.jpg" 

SET imLumenTrain="C:\Classified\Summer\Final\Train\9.jpg" 

SET imNucloCTrain="C:\Classified\Summer\Final\Train\9-Texture.tif" 

SET imNucloDTrain="C:\Classified\Summer\Final\Train\9-Nuclo-merge.tif" 

SET image=9 

 

SET imOriginal="C:\Classified\Summer\Final\%image%.jpg" 

SET imNormed="C:\Classified\Summer\Final\%image%-norm.jpg" 

SET imNucleusMess="C:\Classified\Summer\Final\%image%-Nucleus.tif" 

SET imNucleusClean="C:\Classified\Summer\Final\%image%-Nucleus-denoise.tif" 

SET imLumenMess="C:\Classified\Summer\Final\%image%-Lumen.tif" 

SET imLumenClean="C:\Classified\Summer\Final\%image%-Lumen-denoise.tif" 

SET imNucloTex="C:\Classified\Summer\Final\%image%-Texture.tif" 

SET imNucloClass="C:\Classified\Summer\Final\%image%-Nuclo.tif" 

SET imNucloMerge="C:\Classified\Summer\Final\%image%-Nuclo-merge.tif" 

SET imNucloClean="C:\Classified\Summer\Final\%image%-Nuclo-denoise.tif" 

SET imMerged="C:\Classified\Summer\Final\%image%-Classified.tif" 

 

::STEP 1: NORMALIZE 

SET normExe="C:\Users\hlmox\Documents\NNU\Summer Research\Normalization\x64\Release\ 

Normalization.exe" 

SET inRanges="C:\Classified\Summer\Final\Train\9-ranges.txt" 

 

%normExe% 2 %inRanges% %imOriginal% %imNormed% 

 

::STEP 2: CLASSIFY NUCLEI & LUMINA 

SET svmExe="C:\Users\hlmox\Documents\NNU\Summer Research\SvmBurnClassifier\x64\Release\ 

SvmBurnClassifier.exe" 

SET treeExe="C:\Users\hlmox\Documents\NNU\Summer Research\ArchDecTree2\x64\Release\ 

ArchDecTree2.exe" 

SET trainData1="C:\Classified\Summer\Final\Train\trainNucleus.csv" 

SET key1="C:\Classified\Summer\Final\Train\keyNucleus.csv" 

SET trainData2="C:\Classified\Summer\Final\Train\trainLumen.csv" 

SET key2="C:\Classified\Summer\Final\Train\keyLumen.csv" 

 

%treeExe% %key1% %trainData1% %imNucleusTrain% %imNormed% %imNucleusMess% 

%treeExe% %key2% %trainData2% %imLumenTrain% %imNormed% %imLumenMess% 
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::STEP 3: DENOISE NUCLEI & LUMINA 

SET denoiseExe="C:\Users\hlmox\Documents\NNU\Summer Research\Denoise\Denoise_v1.4\x64\ 

Release\Denoise_v1.4.exe" 

 

%denoiseExe% %imNucleusMess% -pf 1 20 20 

%denoiseExe% %imLumenMess% -pf 1 128 128 

 

::STEP 4a: NUCLEOLI--TEXTURE 

SET nucleoliExe="C:\Users\hlmox\Documents\NNU\Summer Research\ReadPixels\x64\Debug\ 

ReadPixels.exe" 

SET offset=4 

SET color=1 

 

%nucleoliExe% %imOriginal% %imNucleusClean% %imNucloTex% %offset% %color% 

 

::STEP 4b: NUCLEOLI--CLASSIFY 

SET trainData3="C:\Classified\Summer\Final\Train\trainNucloC.csv" 

SET key3="C:\Classified\Summer\Final\Train\keyNuclo.csv" 

 

%svmExe% %imNucloCTrain% %imNucloTex% %imNucloClass% %key3% -p -chi2 -tp %trainData3% 

 

::STEP 4c: NUCLEOLI--MERGE 

SET mergeExe="C:\Users\hlmox\Documents\NNU\Summer Research\Merge\x64\Release\Merge.exe" 

 

%mergeExe% 2 %imNucleusClean% %imNucloClass% %imNucloMerge% 

 

::STEP 4d: NUCLEOLI--DENOISE 

SET denoiseTrain="C:\Classified\Summer\Final\Train\trainNucloD.csv" 

 

%nucleoliExe% %imNucloDTrain% %imNucloMerge% %imNucloClean% %denoiseTrain% 

 

::STEP 5: MERGE ALL 

 

%mergeExe% 3 %imLumenClean% %imNucloClean% %imMerged% 

 

 

 Batch file used to run accuracy calculations from Windows Command Prompt 
 

SET num=9 

 

SET image1="C:\Classified\Summer\Research\SVMvTree2\%num%-chi2.tif" 

 

SET validNucleus="C:\Classified\Summer\Final\Valid %num%\img%num%ValidNucleus.csv" 

SET validLumen="C:\Classified\Summer\Final\Valid %num%\img%num%ValidLumen.csv" 
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SET validNuclo="C:\Classified\Summer\Final\Valid %num%\img%num%ValidNuclo.csv" 

SET exe="C:\Users\hlmox\Documents\NNU\Summer Research\CancerAccuracy2.0\x64\Debug\ 

CancerAccuracy2.0.exe" 

 

%exe% %validNucleus% %validLumen% %validNuclo% %image1% 

 

 

 Normalization program 
  Norm.h 
 
#ifndef NORM_H 
#define NORM_H 
 
#include "stdafx.h" 
#include "opencv2/highgui.hpp" 
#include "opencv2/core.hpp" 
#include <fstream> 
 
 
using namespace cv; 
using namespace std; 
 
class Normalization  
{ 
private: 
 int normRanges[6];    // Ranges of RGB values to normalize to 
 Mat inImage;     // Image normRanges are pulled from 
 int oldRanges[6];    // Ranges of RGB values of image to be 
normalized 
 Mat toNormImage;    // Image to normalize 
 Mat outImage;     // Normalized image 
 
 const int RED_HIGH = 0;   // Set indices for values in ranges 
arrays 
 const int RED_LOW = 1;   // E.g. the lowest red value is in arr[1] 
 const int GREEN_HIGH = 2; 
 const int GREEN_LOW = 3; 
 const int BLUE_HIGH = 4; 
 const int BLUE_LOW = 5; 
 
public: 
 Normalization();    // Constructor, initializes ranges arrays 
 void setInImage(string);  // Reads from given path into member variable 
inImage 
 void setToNormImage(string); // Reads from given path into member variables 
toNormImage, creates matching but empty outImage 
 void printRanges(string);  // Output normRanges to given .txt file 
 void readRanges(string);  // Read from given .txt file into normRanges 
 void getRanges(int[], Mat);  // Fill given array with ranges pulled from the 
given image 
 void getNormRanges();   // Calls other member functions to read 
normRanges from an image 
 void normalizeImage();   // Gets ranges for toNormImage, steps 
through each pixel and calculates normalized values 
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 Vec3b normalizeVector(Vec3b); // Normalizes a given pixel 
 int normalizeValue(int, int); // Normalizes a given pixel value 
 void saveImage(string);   // Saves outImage to the given string 
 
}; 
 
 
#endif 

 

 Norm.cpp 
 
#include "stdafx.h" 
//#include "opencv2/highgui.hpp" in Norm.h 
//#include "opencv2/core.hpp" in Norm.h 
//#include <fstream> in Norm.h 
 
#include "Norm.h" 
 
 
Normalization::Normalization() 
{ 
 // Initialize both ranges arrays so they aren't empty 
 normRanges[RED_HIGH] = 0; 
 normRanges[GREEN_HIGH] = 0; 
 normRanges[BLUE_HIGH] = 0; 
 normRanges[RED_LOW] = 255; 
 normRanges[GREEN_LOW] = 255; 
 normRanges[BLUE_LOW] = 255; 
 
 oldRanges[RED_HIGH] = 0; 
 oldRanges[GREEN_HIGH] = 0; 
 oldRanges[BLUE_HIGH] = 0; 
 oldRanges[RED_LOW] = 255; 
 oldRanges[GREEN_LOW] = 255; 
 oldRanges[BLUE_LOW] = 255; 
} 
 
void Normalization::setInImage(string input) 
{ 
 inImage = imread(input); 
} 
 
void Normalization::setToNormImage(string input) 
{ 
 toNormImage = imread(input); 
 outImage.create(toNormImage.rows, toNormImage.cols, CV_8UC3); 
} 
 
void Normalization::printRanges(string output) 
{ 
 ofstream outFile; 
 outFile.open(output.c_str()); 
 
 outFile << "Red range: ( " << normRanges[RED_LOW] << " " << normRanges[RED_HIGH] 
<< " )" << endl; 
 outFile << "Green range: ( " << normRanges[GREEN_LOW] << " " << 
normRanges[GREEN_HIGH] << " )" << endl; 
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 outFile << "Blue range: ( " << normRanges[BLUE_LOW] << " " << 
normRanges[BLUE_HIGH] << " )" << endl; 
 
 outFile.close(); 
} 
 
void Normalization::readRanges(string input) 
{ 
 ifstream inFile; 
 string line; 
 string low; 
 string high; 
 inFile.open(input.c_str()); 
 
 for (int i = 0; i < 3; i++) 
 { 
  getline(inFile, line, '('); 
  inFile >> low; 
  normRanges[1 + 2 * i] = stoi(low); 
  inFile >> high; 
  normRanges[2 * i] = stoi(high); 
  getline(inFile, line); 
 } 
} 
 
void Normalization::getNormRanges() 
{ 
 getRanges(normRanges, inImage); 
} 
 
void Normalization::getRanges(int ranges[], Mat image) 
{ 
 Vec3b pixel; 
 
 for (int i = 0; i < image.rows; i++) 
 { 
  for (int j = 0; j < image.cols; j++) 
  { 
   pixel = image.at<Vec3b>(i, j); 
 
   //check for new high 
   if (pixel[2] > ranges[RED_HIGH]) 
   { 
    ranges[RED_HIGH] = pixel[2]; 
   } 
   if (pixel[1] > ranges[GREEN_HIGH]) 
   { 
    ranges[GREEN_HIGH] = pixel[1]; 
   } 
   if (pixel[0] > ranges[BLUE_HIGH]) 
   { 
    ranges[BLUE_HIGH] = pixel[0]; 
   } 
 
   //check for new low 
   if (pixel[2] < ranges[RED_LOW]) 
   { 
    ranges[RED_LOW] = pixel[2]; 
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   } 
   if (pixel[1] < ranges[GREEN_LOW]) 
   { 
    ranges[GREEN_LOW] = pixel[1]; 
   } 
   if (pixel[0] < ranges[BLUE_LOW]) 
   { 
    ranges[BLUE_LOW] = pixel[0]; 
   } 
  } 
 } 
} 
 
void Normalization::normalizeImage() 
{ 
 getRanges(oldRanges, toNormImage); 
 
 Vec3b pixel; 
 
 for (int i = 0; i < toNormImage.rows; i++) 
 { 
  for (int j = 0; j < toNormImage.cols; j++) 
  { 
   pixel = toNormImage.at<Vec3b>(i, j); 
   pixel = normalizeVector(pixel); 
   outImage.at<Vec3b>(i, j) = pixel; 
  } 
 } 
} 
 
Vec3b Normalization::normalizeVector(Vec3b oldPixel) 
{ 
 Vec3b newPixel; 
 newPixel[2] = normalizeValue(oldPixel[2], 0); //0 for red 
 newPixel[1] = normalizeValue(oldPixel[1], 1); //1 for green 
 newPixel[0] = normalizeValue(oldPixel[0], 2); //2 for blue 
 return newPixel; 
} 
 
int Normalization::normalizeValue(int oldVal, int RGB) 
{ 
 // RGB = 0 for red, 1 for green, 2 for blue 
 // Using min-max normalization  
 
 double numerator = double(oldVal - oldRanges[2 * RGB + 1]); 
 double denominator = double(oldRanges[2 * RGB] - oldRanges[2 * RGB + 1]); 
 double newRange = double(normRanges[2 * RGB] - normRanges[2 * RGB + 1]); 
 double newOffset = double(normRanges[2 * RGB + 1]); 
 
 double newVal = (numerator / denominator)*newRange + newOffset; 
 int roundVal = round(newVal); 
 
 return roundVal; 
} 
 
void Normalization::saveImage(string output) 
{ 
 imwrite(output, outImage); 



34 

}  
 
 Normalization.cpp 
 
// Normalization.cpp : Defines the entry point for the console application. 
// 
 
#include "stdafx.h" 
#include "opencv2/highgui.hpp" 
#include "opencv2/core.hpp" 
#include <iostream> 
#include <fstream> 
#include <string> 
 
#include "Norm.h" 
 
using namespace cv; 
using namespace std; 
 
// Prototypes 
bool checkFile(string); 
 
// Drivier for Norm.cpp 
int main(int argc, char* argv[]) 
{ 
 
 if (argc == 1) 
 { 
  cout << "First argument must be option number (1, 2, or 3)" << endl << 
endl; 
 
  cout << "Option 1: given an image, output to a text file the range of 
colors in that image" << endl; 
  cout << "Cmdline params: 1 input_image (output_file_path)" << endl << endl; 
 
  cout << "Option 2: given an image and color range, output image normalized 
to that range" << endl; 
  cout << "Cmdline params: 2 input_color_range to_norm_image 
(output_image_path)" << endl << endl; 
 
  cout << "Option 3: given two images, output the second normalized to the 
first" << endl; 
  cout << "Cmdline params: 3 input_image to_norm_image (output_image_path)" 
<< endl << endl; 
 } 
 else // (argc > 1) 
 { 
  int option = 0; 
 
  try 
  { 
   option = stoi(argv[1]); 
  } 
  catch (exception e) 
  { 
   cout << "First agment must be option number (1, 2, or 3)" << endl; 
  } 
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  if (option == 1 && argc >= 3) 
   { 
    // Set up and check args 
    string inputImagePath = argv[2]; 
    string outputFilePath; 
    if (argc == 3) 
    { 
     outputFilePath = inputImagePath.substr(0, 
inputImagePath.find_last_of('.')) + "-ranges.txt"; 
    } 
    else //argc == 4 
    { 
     outputFilePath = argv[3]; 
    } 
 
    if (checkFile(inputImagePath)) 
    { 
     // Run Option 1: get range for normalization from 
an image 
     cout << "Running Option 1...   "; 
     Normalization norm;     
 //initialize norm function object 
     norm.setInImage(inputImagePath);  //initialize 
input image to get ranges from 
     norm.getNormRanges();    
 //find range values  
     norm.printRanges(outputFilePath);  //save ranges 
to filepath 
     cout << "done" << endl; 
    } 
   } 
  else if (option == 2 && argc >= 4) 
   { 
    // Set up and check args 
    string inputRangesPath = argv[2]; 
    string toNormImagePath = argv[3]; 
    string outputImagePath; 
    if (argc == 4) 
    { 
     outputImagePath = toNormImagePath.substr(0, 
toNormImagePath.find_last_of('.')) + "-normalized.tif"; 
    } 
    else //argc == 5 
    { 
     outputImagePath = argv[4]; 
    } 
 
    if (checkFile(inputRangesPath) && checkFile(toNormImagePath)) 
    { 
     // Run Option 2: normalize an image to the given 
range 
     cout << "Running Option 2...   "; 
     Normalization norm;      
 //initialize norm function object 
     norm.setToNormImage(toNormImagePath); 
 //initialize image to normalize 
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     norm.readRanges(inputRangesPath);   //read 
in new ranges from file 
     norm.normalizeImage();     
 //normalize image to new ranges 
     norm.saveImage(outputImagePath);   //save 
normalized image 
     cout << "done" << endl; 
    } 
   } 
  else if (option == 3 && argc >= 4) 
   { 
    // Set up and check args 
    string inputImagePath = argv[2]; 
    string toNormImagePath = argv[3]; 
    string outputImagePath; 
    if (argc == 4) 
     outputImagePath = toNormImagePath.substr(0, 
toNormImagePath.find_last_of('.')) + "-normalized.tif"; 
    else //argc == 5 
     outputImagePath = argv[4]; 
 
    if (checkFile(inputImagePath) && checkFile(toNormImagePath)) 
    { 
     // Run option 3: normalize one image to another 
     cout << "Running Option 3...   "; 
     Normalization norm;      
 //initialize norm function object 
     norm.setInImage(inputImagePath);  
 //initialize input image to get ranges from 
     norm.setToNormImage(toNormImagePath); 
 //initizlie image to normalize 
     norm.getNormRanges();     
 //get new ranges to normalize to 
     norm.normalizeImage();     
 //normalize image to new ranges 
     norm.saveImage(outputImagePath);   //save 
normalized image 
     cout << "done" << endl; 
    } 
   } 
  else //incorrect arguments given 
  { 
   cout << "First argument must be option number (1, 2, or 3)" << endl 
<< endl; 
 
   cout << "Option 1: given an image, output to a text file the range 
of colors in that image" << endl; 
   cout << "Cmdline params: 1 input_image (output_file_path)" << endl 
<< endl; 
 
   cout << "Option 2: given an image and color range, output image 
normalized to that range" << endl; 
   cout << "Cmdline params: 2 input_color_range to_norm_image 
(output_image_path)" << endl << endl; 
 
   cout << "Option 3: given two images, output the second normalized to 
the first" << endl; 
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   cout << "Cmdline params: 3 input_image to_norm_image 
(output_image_path)" << endl << endl; 
  } 
 } 
 
 return 0; 
} 
 
bool checkFile(string fileName) 
{ 
 bool good = false; 
 
 //considered good if file opens 
 fstream infile; 
 infile.open(fileName.c_str()); 
 if (infile) 
  good = true; 
 else 
  cout << "File <" << fileName << "> cannot be opened" << endl; 
 infile.close(); 
 
 return good; 
} 

 
 

 Texture generation program 
  GradientImage.h 
 
#ifndef GRIMG_H 
#define GRIMG_H 
 
#include "stdafx.h" 
#include "opencv2/highgui.hpp" 
#include "opencv2/core.hpp" 
#include "opencv2/imgproc/imgproc.hpp" 
#include <string> 
#include <fstream> 
#include <iostream> 
 
using namespace std; 
using namespace cv; 
 
class PixelGrad { 
public: 
 int grads[4][4]; 
 float gradsAvg[4]; 
 
 /* 2D GRADIENT ARRAY LAYOUT */ 
 //   up  down  left  right 
 // blue 
 // green 
 // red 
 // total 
}; 
 
/* 
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Adjustments I'd like to make: 
 - (X) store imOut as a member variable, so it persists the functions that create 
it 
 - store dimensions of the image as member variables, so I'm not always accessing 
an image just to get that value 
*/ 
 
class Image { 
private: 
 const int SIDE_FLAG = -1234; 
 
 double threshHigh; 
 double threshLow; 
 int ROWS; 
 int COLS; 
 
 Mat imRGB;    //original raw, RGB image 
 Mat imClass;   //nucleus positive, other negative 
 Mat imClassShave;  //edges removed 
 Mat imOutClass;   //double positive and other 
 Mat imOutTex;   //avg gradient output 
 Mat imGray;    //human-eye weighted grayscale 
 Mat imGrayBinned;  //binned grayscale :D 
 PixelGrad** gradient; //2D array matching imRGB's dimensions  
 
 int calcTotalGradient(Vec3b, Vec3b); 
 void calcColorGradient(PixelGrad&, Vec3b, Vec3b, int); 
 void setTotalGradient(int[], int, int); 
 void setColorGradient(PixelGrad, int, int); 
 void getAvgGrads(int, int); 
 int gradGreaterThan(int, int, int); 
 int closeToEdge(int, int, int); 
 int getSize(int, int, Mat&); 
 void deleteChunk(int, int); 
 void getCounts(int, int, int&, int&, Mat&); 
 void deleteRed(int, int, Mat&); 
 
public: 
 // Basic member functions 
 Image(); 
 void setImage(string, string); 
 Image(string, string);  
 ~Image(); 
 double getHigh(); 
 double getLow(); 
 
 // Output Functions 
 void printGradient();     // simple outputs as tuples 
 void printPrettyGradient(string);  // outputs into csv for Excel 
 void saveGradTotalTexture(string);  // currently normalizes, might be useless 
 void saveGradColorTexture(string);  // color version of gradients :D 
 void saveClassified(string);   // self-explanatory 
 void saveConTexture(string);   // save outImTex, basically 
 
 // Calculate Gradients 
 void getTotalGrads(int);    // Get general gradients based on 
given offset 
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 void getColorGrads(int);    // Get general gradients in red, 
green, and blue 
 void getTotalAvgGrads(int);    // Compute avg gradients, assuming 
general  
 void getColorAvgGrads(int);    // compute avg grad for RGB 
channels 
 
 // Training Data 
 void getSplits(string);     // gets splits for 
classification 
 float getPercentage(string, string); // gets percent for denoise2 
 float infoGain(int[], float[], int); // finds greatest entropy 
 float getEntropy(int[][2]);    // computes entropy 
 float neg_xlogx(float);     // -x*log(x), 0 at 0; 
 
 // Classification 
 void classify(int, int);    // Look at general gradients, 3/4 
over threshhold 
 void classifyv2(int, int, int);   // 3/4 general grads over 
threshhold and not close to edge 
 //classify3        // nucleusThresh, 
avg gradient thresh (like 1) 
 void classifyv4(double, double);  // gradAvg between two values 
 
 
 // Pre- and Post-Processing 
 void removeEdges(int);     // shaves off positive 
shapes by given offset 
 void removeRedEdges(int);    // shaves off double positive 
shapes by given offset 
 void denoise1(int, int);    // because i'm stubborn (Classic 
denoise) 
 void denoise2(double);     // also because I'm 
stubborn (percentage denoise) 
 void accuracyEval(string);    // does stuff to compute accuracy 
and stuff.  
 
 // Contrast 
 void contrast(int, int, int);   // main for getting GLCM-based 
contrast 
 void bin(int);       // binning! 
 void getGLCM(Mat, int, int, int, int); // computes GLCM 
}; 
 
#endif 
 
#include "stdafx.h" 
 
#include "GradientImage.h" 
 
/* BASIC MEMBER FUNCTIONS */ 
 
Image::Image() 
{ 
 threshHigh = 500; 
 threshLow = 0; 
} 
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void Image::setImage(string imageOriginalPath, string imageClassifiedPath) 
{ 
 imRGB = imread(imageOriginalPath, 1); 
 imClass = imread(imageClassifiedPath, 0); 
 //both input images should have the same dimensions 
 ROWS = imRGB.rows; 
 COLS = imRGB.cols; 
 
 gradient = new PixelGrad*[ROWS]; 
 for (int i = 0; i < ROWS; i++) 
 { 
  gradient[i] = new PixelGrad[COLS]; 
 } 
} 
 
Image::Image(string imageOriginalPath, string imageClassifiedPath) 
{ 
 threshHigh = 500; 
 threshLow = 0; 
 
 imRGB = imread(imageOriginalPath, 1); 
 imClass = imread(imageClassifiedPath, 0); 
 //both input images should have the same dimensions 
 ROWS = imRGB.rows; 
 COLS = imRGB.cols; 
 
 gradient = new PixelGrad*[ROWS]; 
 for (int i = 0; i < ROWS; i++) 
 { 
  gradient[i] = new PixelGrad[COLS]; 
 } 
} 
 
Image::~Image() 
{ 
 for (int i = 0; i < ROWS; i++) 
 { 
  delete[] gradient[i]; 
 } 
 delete[] gradient; 
} 
 
double Image::getHigh() 
{ 
 return threshHigh; 
} 
 
double Image::getLow() 
{ 
 return threshLow; 
} 
 
/* OUTPUT MEMBER FUNCTIONS */ 
 
void Image::printGradient() 
{ 
 //updated but haven't debugged 
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 PixelGrad* ptr; 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   ptr = &gradient[i][j]; 
   cout << "(" << ptr->grads[3][0] << " " << ptr->grads[3][1] << " " << 
ptr->grads[3][2] 
    << " " << ptr->grads[3][3] << " " << ptr->gradsAvg[3] << ") "; 
  } 
  cout << endl; 
 } 
} 
 
void Image::printPrettyGradient(string outFilePath) 
{ 
 //Fairly meaningless output if offset =/= 1 
 //Upgraded but haven't debugged 
 
 PixelGrad* ptr; 
 ofstream outFile; 
 outFile.open(outFilePath.c_str()); 
 
 // For each row of pixels 
 for (int i = 0; i < ROWS; i++) 
 { 
  // Output top row 
  outFile << ","; 
  for (int j = 0; j < COLS; j++) 
  { 
   ptr = &gradient[i][j]; 
   outFile << ptr->grads[3][0] << ",,"; 
  } 
  // Output side (right) row and avg 
  outFile << endl << "-1234,"; 
  for (int j = 0; j < COLS; j++) 
  { 
   ptr = &gradient[i][j]; 
   outFile << ptr->gradsAvg[3] << "," << ptr->grads[3][2] << ","; 
  } 
  outFile << endl; 
 } 
 // Output bottom row 
 for (int j = 0; j < COLS; j++) 
 { 
  outFile << ",-1234,"; 
 } 
} 
 
void Image::saveGradTotalTexture(string outImagePath) 
{ 
 int classPixel; 
 imOutTex.create(ROWS, COLS, CV_8UC1); 
 
 float highest = 0; 
 float lowest = 255; 
 float avg; 
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 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imClassShave.at<uchar>(i, j) % 2; 
   if (classPixel) 
   { 
    avg = gradient[i][j].gradsAvg[3]; 
    if (avg > highest) 
     highest = avg; 
    if (avg < lowest) 
     lowest = avg; 
   } 
  } 
 } 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imClassShave.at<uchar>(i, j) % 2; 
   avg = (gradient[i][j].gradsAvg[3] - lowest) / (highest - lowest) * 
255; 
   if (classPixel) 
   { 
    imOutTex.at<uchar>(i, j) = int(round(avg)); 
   } 
   else 
   { 
    imOutTex.at<uchar>(i, j) = 0; 
   } 
  } 
 } 
 
 imwrite(outImagePath, imOutTex); 
} 
 
void Image::saveGradColorTexture(string outImagePath) 
{ 
 int classPixel; 
 Vec3b texPixel; 
 Vec3b black = { 0, 0, 0 }; 
 imOutTex.create(ROWS, COLS, CV_8UC3); 
 
 //no normalization, not sure it's worth it, we'll see how it looks 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imClassShave.at<uchar>(i, j) % 2; 
   //avg = (gradient[i][j].gradsAvg[3] - lowest) / (highest - lowest) * 
255; 
   if (classPixel) 
   { 
    for (int k = 0; k < 3; k++) 
    { 
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     texPixel[k] = round(gradient[i][j].gradsAvg[k]); 
    } 
    imOutTex.at<Vec3b>(i, j) = texPixel; 
   } 
   else 
   { 
    imOutTex.at<Vec3b>(i, j) = black; 
   } 
  } 
 } 
 
 imwrite(outImagePath, imOutTex); 
} 
 
void Image::saveClassified(string outImagePath) 
{ 
 imwrite(outImagePath, imOutClass); 
} 
 
void Image::saveConTexture(string outImagePath) 
{ 
 imwrite(outImagePath, imOutTex); 
} 
 
/* GRADIENT COMPUTATION MEMBER FUNCTIONS */ 
 
void Image::getTotalGrads(int offset) 
{ 
 Vec3b centerPixel; 
 Vec3b sidePixel; 
 int gradArr[4]; 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   centerPixel = imRGB.at<Vec3b>(i, j); 
   for (int k = 0; k < 4; k++) 
   { 
    gradArr[k] = SIDE_FLAG; 
   } 
   if (i > offset - 1) //room above 
   { 
    //get upper gradient 
    sidePixel = imRGB.at<Vec3b>(i - offset, j); 
    gradArr[0] = calcTotalGradient(centerPixel, sidePixel); 
   } 
   if (i < (imRGB.rows - offset)) //room below 
   { 
    //get lower gradient 
    sidePixel = imRGB.at<Vec3b>(i + offset, j); 
    gradArr[1] = calcTotalGradient(centerPixel, sidePixel); 
   } 
   if (j > offset - 1) //room on left 
   { 
    //get left gradient 
    sidePixel = imRGB.at<Vec3b>(i, j - offset); 
    gradArr[2] = calcTotalGradient(centerPixel, sidePixel); 
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   } 
   if (j < (imRGB.cols - offset)) //room on right 
   { 
    //get right gradient 
    sidePixel = imRGB.at<Vec3b>(i, j + offset); 
    gradArr[3] = calcTotalGradient(centerPixel, sidePixel); 
   } 
   setTotalGradient(gradArr, i, j); 
  } 
 } 
} 
 
void Image::getColorGrads(int offset) 
{ 
 Vec3b centerPixel; 
 Vec3b sidePixel; 
 
 PixelGrad rainbow; 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   centerPixel = imRGB.at<Vec3b>(i, j); 
   for (int k = 0; k < 3; k++) 
   { 
    for (int l = 0; l < 4; l++) 
    { 
     rainbow.grads[k][l] = SIDE_FLAG; 
    } 
   } 
 
   if (i > offset - 1) //room above 
   { 
    //get upper gradient 
    sidePixel = imRGB.at<Vec3b>(i - offset, j); 
    calcColorGradient(rainbow, centerPixel, sidePixel, 0); 
   } 
   if (i < (imRGB.rows - offset)) //room below 
   { 
    //get lower gradient 
    sidePixel = imRGB.at<Vec3b>(i + offset, j); 
    calcColorGradient(rainbow, centerPixel, sidePixel, 1); 
   } 
   if (j > offset - 1) //room on left 
   { 
    //get left gradient 
    sidePixel = imRGB.at<Vec3b>(i, j - offset); 
    calcColorGradient(rainbow, centerPixel, sidePixel, 2); 
   } 
   if (j < (imRGB.cols - offset)) //room on right 
   { 
    //get right gradient 
    sidePixel = imRGB.at<Vec3b>(i, j + offset); 
    calcColorGradient(rainbow, centerPixel, sidePixel, 3); 
   } 
   setColorGradient(rainbow, i, j); 
  } 
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 } 
} 
 
void Image::getTotalAvgGrads(int offset) 
{ 
 getAvgGrads(offset, 3); 
} 
 
void Image::getColorAvgGrads(int offset) 
{ 
 getAvgGrads(offset, 0); 
 getAvgGrads(offset, 1); 
 getAvgGrads(offset, 2); 
} 
 
 
/* TRAININD DATA MEMBER FUNCTIONS */ 
 
void Image::getSplits(string filePath) 
{ 
 string line; 
 int x; 
 int y; 
 int texVal; 
 int texture[1000]; // don't feel like counting and doing dynamic array :P 
 int arrLen = 0; 
 int outliers = 0; 
 double mean = 0; 
 double sd = 0; 
 
 ifstream inFile; 
 inFile.open(filePath.c_str()); 
 
 getline(inFile, line); //junk header 
 while (!inFile.eof()) 
 { 
  // Get values 
  getline(inFile, line, ','); 
  getline(inFile, line, ','); 
  x = stoi(line); 
  getline(inFile, line, '\n'); 
  y = stoi(line); 
  texVal = round(gradient[y][x].gradsAvg[3]); 
  texture[arrLen++] = texVal; 
 } 
 inFile.close(); 
 
 // Get mean 
 for (int i = 0; i < arrLen; i++) 
 { 
  mean += texture[i]; 
 } 
 mean = mean / arrLen; 
 
 // Get standard deviation 
 for (int i = 0; i < arrLen; i++) 
 { 
  sd += pow(texture[i] - mean, 2); 
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 } 
 sd = sd / arrLen; 
 sd = sqrt(sd); 
 
 // Throw out "outliers" 
 for (int i = 0; i < arrLen; i++) 
 { 
  if (texture[i] < (mean - sd) || texture[i] > (mean + sd)) 
  { 
   texture[i] = 0; 
   outliers++; 
  } 
 } 
 
 // Recalculate mean 
 mean = sd = 0; 
 for (int i = 0; i < arrLen; i++) 
 { 
  mean += texture[i]; 
 } 
 mean = mean / (arrLen - outliers); 
 
 // Recalculate standard deviation 
 for (int i = 0; i < arrLen; i++) 
 { 
  if (texture[i] != 0) //could technically have a zero value? outlier though? 
  { 
   sd += pow(texture[i] - mean, 2); 
  } 
 } 
 sd = sd / (arrLen - outliers); 
 sd = sqrt(sd); 
 
 // Set threshholds 
 threshLow = mean - sd; 
 threshHigh = 2 * mean; 
} 
 
float Image::getPercentage(string filePath, string imagePath) 
{ 
 // for just denoise 
 if (imOutClass.dims == 0) 
  imOutClass = imRGB.clone(); 
 
 //swap in training image 
 Mat imHold = imOutClass.clone(); 
 imOutClass = imread(imagePath, 1); 
 
 //lots of variables 
 string line; 
 int x; 
 int y; 
 float percents[1000]; //parallel array for nuclei 
 int classes[1000];  //other parallel array for nuclei 
 int arrLen = 0; 
 Mat checked; 
 checked.create(ROWS, COLS, CV_8UC1); 
 int redCount; 
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 int whiteCount; 
 
 ifstream inFile; 
 inFile.open(filePath.c_str()); 
 
 getline(inFile, line); //junk header 
 while (!inFile.eof()) 
 { 
  // Get values: fill class and percent arrays 
  getline(inFile, line, ','); 
  if (line[0] == 'N') //shortcut check 
   classes[arrLen] = 1; 
  else 
   classes[arrLen] = 0; 
  getline(inFile, line, ','); 
  x = stoi(line); 
  getline(inFile, line, '\n'); 
  y = stoi(line); 
  redCount = whiteCount = 0; 
  getCounts(y, x, whiteCount, redCount, checked); //uses imOutClass 
  if (redCount != 0) 
   percents[arrLen++] = float(redCount) / float(whiteCount); 
  else 
   percents[arrLen++] = percents[arrLen - 2]; //error with counts, set 
to previous 
 } 
 inFile.close(); 
 
 //re-swap imOutClass 
 imOutClass = imHold.clone(); 
 
 return infoGain(classes, percents, arrLen); 
 
} 
 
float Image::infoGain(int classes[], float percents[], int arrLen) 
{ 
 float entropy[100]; 
 
 //Initialize counter matrix 
 int counters[2][2]; 
 counters[0][0] = 0; 
 counters[0][1] = 0; 
 counters[1][0] = 0;   // FN  TN 
 counters[1][1] = 0;   // FP  TP 
 
 float high; 
 int index; 
 int classTemp; 
 float percentTemp; 
 // for each value 
 for (int i = 0; i < arrLen; i++) 
 { 
  high = 0; 
  classTemp = classes[arrLen - i - 1]; 
  percentTemp = percents[arrLen - i - 1]; 
 
  //find next highest 
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  for (int j = 0; j < arrLen - i; j++) 
  { 
   if (percents[j] > high) 
   { 
    high = percents[j]; 
    index = j; 
   } 
  } 
  //swap 
  classes[arrLen - i - 1] = classes[index]; 
  percents[arrLen - i - 1] = percents[index]; 
  classes[index] = classTemp; 
  percents[index] = percentTemp;  
 } 
 
 // Count 
 float midpoint; 
 entropy[arrLen - 1] = 10; //fill in missing midpoint 
 for (int i = 0; i < arrLen - 1; i++) 
 { 
  //get midpoint 
  midpoint = (percents[i] + percents[i + 1]) / 2; 
   
  //reset counters to zero 
  counters[0][0] = 0; 
  counters[0][1] = 0; 
  counters[1][0] = 0;   // FN  TN 
  counters[1][1] = 0;   // FP  TP 
 
  //for each nucleus, increment counters 
  for (int j = 0; j < arrLen; j++) 
  { 
   //greater than midpoint, predicted class 0 
   if (percents[j] > midpoint) 
    counters[classes[j]][0]++; 
   else 
    counters[classes[j]][1]++; 
  } 
   
  //compute entropy for counters 
  entropy[i] = getEntropy(counters); 
 } 
 
 //cout << "InfoGain Results:" << endl; 
 //for (int i = 0; i < arrLen; i++) 
 // cout << "Class: " << classes[i] << "\tPercent: " << percents[i] << 
"\tEntropy: " << entropy[i] << endl; 
 
 //find highest entropy, go with that split point 
 float low = 10; 
 for (int i = 0; i < arrLen; i++) 
 { 
  if (entropy[i] < low) 
  { 
   low = entropy[i]; 
   index = i; 
  } 
 } 
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 midpoint = float((percents[index] + percents[index + 1]) / 2); 
 return midpoint; 
} 
 
float Image::getEntropy(int counters[][2]) 
{ 
 double returnVal = 0; 
 double placeholder; 
 int x, y; 
 double sumTerms[3]; 
 for (y = 0; y < 3; y++) 
 { 
  sumTerms[y] = 0; 
 } 
 for (y = 0; y < 2; y++) 
 { 
  for (x = 0; x < 2; x++) 
  { 
   sumTerms[y] += counters[x][y]; 
  } 
  sumTerms[2] += sumTerms[y]; 
 } 
 
 for (y = 0; y < 2; y++) 
 { 
  placeholder = 0.0; 
  for (x = 0; x < 2; x++) 
  { 
   if (sumTerms[y] != 0) 
    placeholder += neg_xlogx(counters[x][y] / sumTerms[y]); 
  } 
  sumTerms[y] = sumTerms[y] / sumTerms[2] * placeholder; 
  returnVal += sumTerms[y]; 
 } 
 
 return float(returnVal); 
} 
 
float Image::neg_xlogx(float x) 
{ 
 if (x == 0) 
  return 0; 
 else 
  return float((-1)*(x)*(log(x) / log(2))); 
} 
 
/* CLASSIFICATION MEMBER FUNCTIONS */ 
 
void Image::classify(int nucleusThresh, int gradThresh) 
{ 
 Vec3b nucleoli = { 255, 255, 255 }; 
 Vec3b nucleus = { 0, 0, 0 }; 
 Vec3b other = { 0, 0, 0 }; 
 int classPixel; 
 
 imOutClass.create(ROWS, COLS, CV_8UC1); 
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 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imClassShave.at<uchar>(i, j) % 2; 
   if (classPixel)  //if in a nucleus 
   { 
    if (gradGreaterThan(i, j, gradThresh) >= nucleusThresh) 
 //3 or more changes greater than 20 
    { 
     //set to nucleoli 
     imOutClass.at<Vec3b>(i, j) = nucleoli; 
    } 
    else        //no 
significant changes between pixel vals 
    { 
     //set to nucleus 
     imOutClass.at<Vec3b>(i, j) = nucleus; 
    } 
   } 
   else    //not in nucleus 
   { 
   // set to other 
   imOutClass.at<Vec3b>(i, j) = other; 
   } 
  } 
 } 
} 
 
void Image::classifyv2(int nucleusThresh, int gradThresh, int edgeThresh) 
{ 
 //default arguments: 3, 24, 2 
 Vec3b nucleoli = { 255, 255, 255 }; 
 Vec3b nucleus = { 0, 0, 0 }; 
 Vec3b other = { 0, 0, 0 }; 
 int classPixel; 
 
 imOutClass.create(ROWS, COLS, CV_8UC1); 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imClassShave.at<uchar>(i, j) % 2; 
   if (classPixel)  //if in a nucleus 
   { 
    if (closeToEdge(i, j, edgeThresh) == 0)  //not within 
2 pixels of "other" 
    { 
     if (gradGreaterThan(i, j, gradThresh) >= nucleusThresh) 
 //3 or more changes greater than 20 
     { 
      //set to nucleoli 
      imOutClass.at<Vec3b>(i, j) = nucleoli; 
     } 
     else       
 //no significant changes between pixel vals 
     { 
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      //set to nucleus 
      imOutClass.at<Vec3b>(i, j) = nucleus; 
     } 
    } 
    else       //close to 
edge 
    { 
     //set to nucleus 
     imOutClass.at<Vec3b>(i, j) = nucleus; 
    } 
   } 
   else    //not in nucleus 
   { 
    // set to other 
    imOutClass.at<Vec3b>(i, j) = other; 
   } 
  } 
 } 
} 
 
void Image::classifyv4(double less, double high) 
{ 
 Vec3b nucleoli = {0, 0, 255 }; 
 Vec3b nucleus = { 255, 255, 255 }; 
 Vec3b other = { 0, 0, 0 }; 
 int classPixel; 
 float texPixel; 
 
 imOutClass.create(ROWS, COLS, CV_8UC3); 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imClass.at<uchar>(i, j) % 2; 
   if (classPixel) 
   { 
    texPixel = gradient[i][j].gradsAvg[3]; 
    if (texPixel >= less && texPixel <= high) 
    { 
     imOutClass.at<Vec3b>(i, j) = nucleoli; 
    } 
    else 
    { 
     imOutClass.at<Vec3b>(i, j) = nucleus; 
    } 
   } 
   else 
   { 
    imOutClass.at<Vec3b>(i, j) = other; 
   } 
  } 
 } 
} 
 
 
/* PRE/POSTPROCESSING MEMBER FUNCTIONS */ 
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void Image::removeEdges(int offset) 
{ 
 imClassShave.create(ROWS, COLS, 0); 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   if (imClass.at<uchar>(i, j) % 2 == 1) //in a nucleus 
   { 
    if (closeToEdge(i, j, offset) != 0) // && is close to 
edge 
    { 
     imClassShave.at<uchar>(i, j) = 0;  //set to 
black 
    } 
    else 
    { 
     imClassShave.at<uchar>(i, j) = 255; //else set to 
white 
    } 
   } 
   else 
   { 
    imClassShave.at<uchar>(i, j) = 0; 
   } 
  } 
 } 
} 
 
void Image::removeRedEdges(int offset) 
{ 
 //hypothetical denoise3, rmoves any red that touches black, replaces with white 
 Mat newImClass; 
 newImClass.create(ROWS, COLS, CV_8UC3); 
} 
 
void Image::denoise1(int min, int max) 
{ 
 // for just denoise 
 if (imOutClass.dims == 0) 
  imOutClass = imRGB.clone(); 
 
 Mat checked; 
 checked.create(ROWS, COLS, CV_8UC1); 
 int classPixel; 
 int checkedAlready; 
 int size; 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imOutClass.at<Vec3b>(i, j)[2] % 2; //1 if full red or 
white 
   checkedAlready = checked.at<uchar>(i, j);   
   if (classPixel == 1 && checkedAlready != 255) //if unchecked and a 
nucleus 
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   { 
    size = getSize(i, j, checked); //count red pixels 
    if (size < min || size > max) 
    { 
     deleteChunk(i, j);   //delete red pixels 
    } 
   } 
  } 
 } 
} 
 
void Image::denoise2(double percentage) 
{ 
 // for just denoise 
 if (imOutClass.dims == 0) 
  imOutClass = imRGB.clone(); 
 
 Mat checked; 
 Mat checked2; 
 checked.create(ROWS, COLS, CV_8UC1); 
 checked2.create(ROWS, COLS, CV_8UC1); 
 int classPixel; 
 int checkedAlready; 
 int whiteCount = 0; 
 int redCount = 0; 
 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   classPixel = imOutClass.at<Vec3b>(i, j)[2] % 2; 
   checkedAlready = checked.at<uchar>(i, j); 
   if (classPixel == 1 && checkedAlready != 255) 
   { 
    redCount = 0; 
    whiteCount = 0; 
    getCounts(i, j, whiteCount, redCount, checked); 
    if ((float)redCount / whiteCount > percentage) 
    { 
     deleteRed(i, j, checked2); //might be better to have a 
new checked Mat for time complexity 
    } 
   } 
  } 
 } 
} 
 
void Image::accuracyEval(string filePath) 
{ 
 if (imOutClass.dims == 0) 
  imOutClass = imRGB.clone(); 
 
 string line; 
 int x; 
 int y; 
 string actualClassS; 
 int actualClass; 
 int redCount; 
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 int whiteCount; 
 Mat checked; 
 checked.create(imOutClass.rows, imOutClass.cols, CV_8UC1); 
 int predictedClass; 
 
 int conMatr[2][2]; 
 conMatr[0][0] = 0;  // TN  FN 
 conMatr[0][1] = 0;  // FP  TP 
 conMatr[1][0] = 0; 
 conMatr[1][1] = 0; 
 double accuracy; 
 int count = 0; 
 
 ifstream inFile; 
 inFile.open(filePath.c_str()); 
 getline(inFile, line); //junk header 
 while (!inFile.eof()) 
 { 
  // Get actual class 
  getline(inFile, actualClassS, ','); 
  if (actualClassS[0] == 'Y') //shortcut check 
   actualClass = 1; 
  else 
   actualClass = 0; 
 
  // Get predicted class 
  getline(inFile, line, ','); 
  x = stoi(line); 
  getline(inFile, line, '\n'); 
  y = stoi(line); 
  count++; 
  redCount = whiteCount = 0; 
  getCounts(y, x, whiteCount, redCount, checked); 
  if (redCount == 0) 
   predictedClass = 0; 
  else 
   predictedClass = 1; 
 
  // Record in confusion matrix 
  conMatr[actualClass][predictedClass]++; 
 } 
 
 accuracy = (double)(conMatr[1][1] + conMatr[0][0]) / (double)count; 
 cout << "Accuracy: " << accuracy << endl; 
 cout << '\t' << conMatr[0][0] << '\t' << conMatr[0][1] << endl; 
 cout << '\t' << conMatr[1][0] << '\t' << conMatr[1][1] << endl; 
} 
 
/* CONTRAST-BASED MEMBER FUNCTIONS*/ 
 
void Image::contrast(int scale, int neighborhood, int offset) 
{ 
 // Convert to grayscale 
 cvtColor(imRGB, imGray, CV_BGR2GRAY); 
 // Bin 
 bin(scale); 
 
 // Set up Mats 
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 Mat GLCM; 
 GLCM.create(pow(2, scale), pow(2, scale), CV_64FC1); 
 Mat contrast; 
 contrast.create(ROWS, COLS, CV_64FC1); 
 contrast = Scalar(0); 
 imOutTex.create(ROWS, COLS, CV_8UC1); 
 
 // For each pixel 
 for (int i = ((neighborhood / 2) + offset); i < ((ROWS - (neighborhood / 2) - 
offset)); i++) 
 { 
  for (int j = ((neighborhood / 2) + offset); j < (COLS - (neighborhood / 2) 
- offset); j++) 
  { 
   if (imClass.at<uchar>(i, j) % 2) 
   { 
    // Calculate Gray-level co-ocurence matrix 
    getGLCM(GLCM, neighborhood, i, j, offset); 
 
    // Add up and calculate contrast 
    contrast.at<double>(i, j) = 0; 
    for (int k = 0; k < pow(2, scale); k++) 
    { 
     for (int l = 0; l < pow(2, scale); l++) 
     { 
      contrast.at<double>(i, j) += GLCM.at<double>(k, 
l) * ((k - l)*(k - l)); 
     } 
    } 
   } 
   else 
   { 
    contrast.at<double>(i, j) = 0; 
   } 
  } 
 } 
 
 // Normalize and save in texture Mat 
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   imOutTex.at<uchar>(i, j) = round(contrast.at<double>(i, j)*pow(2, 8 
- scale)); 
  } 
 } 
} 
 
void Image::bin(int scale) 
{ 
 imGrayBinned.create(ROWS, COLS, CV_8UC1); 
 int binNum = pow(2, scale); 
 int binSize = 256 / binNum; 
 int pixel; 
 
 // for each pixel 
 for (int i = 0; i < ROWS; i++) 
 { 
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  for (int j = 0; j < COLS; j++) 
  { 
   pixel = imGray.at<uchar>(i, j); 
   // check each bin 
   for (int k = 0; k < binNum; k++) 
   { 
    if ((k*binSize <= pixel) && (pixel < (k + 1)*binSize)) 
    { 
     // put in correct bin 
     imGrayBinned.at<uchar>(i, j) = k; 
     break; 
    } 
   } 
  } 
 } 
} 
 
void Image::getGLCM(Mat GLCM, int neighborhood, int row, int col, int offset) 
{ 
 int pixel, neighbor; 
 GLCM = Scalar(0); 
 
 for (int i = (row - (neighborhood - 1) / 2); i <= (row + ((neighborhood - 1) / 
2)); i++) 
 { 
  for (int j = (col - (neighborhood - 1) / 2); j <= (col + ((neighborhood - 
1) / 2)); j++) 
  { 
   pixel = imGrayBinned.at<uchar>(i, j); 
   // Up and down 
   if (imClass.at<uchar>(i, j) % 2) 
   { 
    neighbor = imGrayBinned.at<uchar>(i + offset, j); 
    GLCM.at<double>(pixel, neighbor) += 1; 
    GLCM.at<double>(neighbor, pixel) += 1; 
   } 
   // Right diagonal 
   if (imClass.at<uchar>(i, j) % 2) 
   { 
    neighbor = imGrayBinned.at<uchar>(i + offset, j + offset); 
    GLCM.at<double>(pixel, neighbor) += 1; 
    GLCM.at<double>(neighbor, pixel) += 1; 
   } 
   // Left and right 
   if (imClass.at<uchar>(i, j) % 2) 
   { 
    neighbor = imGrayBinned.at<uchar>(i, j + offset); 
    GLCM.at<double>(pixel, neighbor) += 1; 
    GLCM.at<double>(neighbor, pixel) += 1; 
   } 
   // Left diagonal 
   if (imClass.at<uchar>(i, j) % 2) 
   { 
    neighbor = imGrayBinned.at<uchar>(i - offset, j + offset); 
    GLCM.at<double>(pixel, neighbor) += 1; 
    GLCM.at<double>(neighbor, pixel) += 1; 
   } 
  } 
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 } 
 
 for (int i = 0; i < GLCM.rows; i++) 
 { 
  for (int j = 0; j < GLCM.cols; j++) 
  { 
   GLCM.at<double>(i, j) = GLCM.at<double>(i, j) / (8 * 
pow(neighborhood, 2)); 
  } 
 } 
} 
 
 
/* PRIVATE MEMBER FUNCTIONS */ 
 
int Image::calcTotalGradient(Vec3b center, Vec3b side) 
{ 
 //Currently magnitude and direction 
 int difference = 0; 
 for (int i = 0; i < 3; i++) 
 { 
  difference += (side[i] - center[i]); 
 } 
 return difference; 
} 
 
void Image::calcColorGradient(PixelGrad& rainbow, Vec3b center, Vec3b side, int index) 
{ 
 for (int k = 0; k < 3; k++) 
 { 
  rainbow.grads[k][index] = (side[k] - center[k]); 
 } 
} 
 
void Image::setTotalGradient(int gradArr[], int row, int col) 
{ 
 gradient[row][col].grads[3][0] = gradArr[0]; 
 gradient[row][col].grads[3][1] = gradArr[1]; 
 gradient[row][col].grads[3][2] = gradArr[2]; 
 gradient[row][col].grads[3][3] = gradArr[3]; 
} 
 
void Image::setColorGradient(PixelGrad rainbow, int row, int col) 
{ 
 for (int k = 0; k < 3; k++) 
 { 
  for (int l = 0; l < 4; l++) 
  { 
   gradient[row][col].grads[k][l] = rainbow.grads[k][l]; 
  } 
 } 
} 
 
void Image::getAvgGrads(int offset, int index) 
{ 
 Vec3b colorPixel; 
 int classPixel; 
 int count; 
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 float avg; 
 
 //if no shaved version to use, move original to the shaved image 
 if (imClassShave.dims == 0) 
  imClass.copyTo(imClassShave); 
  
 for (int i = 0; i < ROWS; i++) 
 { 
  for (int j = 0; j < COLS; j++) 
  { 
   if (imClassShave.at<uchar>(i, j) % 2) 
   { 
    avg = 0; 
    count = 0; 
    if (i > offset - 1) //up 
    { 
     classPixel = imClassShave.at<uchar>(i - offset, j) % 2; 
     if (classPixel) 
     { 
      avg += (float)gradient[i][j].grads[index][0]; 
      count++; 
     } 
    } 
    if (i < (ROWS - offset))  //down 
    { 
     classPixel = imClassShave.at<uchar>(i + offset, j) % 2; 
     if (classPixel) 
     { 
      avg += (float)gradient[i][j].grads[index][1]; 
      count++; 
     } 
    } 
    if (j > offset - 1)  //left 
    { 
     classPixel = imClassShave.at<uchar>(i, j - offset) % 2; 
     if (classPixel) 
     { 
      avg += (float)gradient[i][j].grads[index][2]; 
      count++; 
     } 
    } 
    if (j < (COLS - offset))  //right 
    { 
     classPixel = imClassShave.at<uchar>(i, j + offset) % 2; 
     if (classPixel) 
     { 
      avg += (float)gradient[i][j].grads[index][3]; 
      count++; 
     } 
    } 
 
    if (count != 0) 
    { 
     avg = avg / count; 
     gradient[i][j].gradsAvg[index] = abs(avg); 
    } 
    else 
    { 
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     gradient[i][j].gradsAvg[index] = 0; 
    } 
   } 
   else 
   { 
    gradient[i][j].gradsAvg[index] = 0; 
   } 
  } 
 } 
} 
 
int Image::gradGreaterThan(int row, int col, int gradThresh) 
{ 
 int count = 0; 
 PixelGrad* ptr = &gradient[row][col]; 
 if (ptr->grads[3][0] >= gradThresh) 
  count++; 
 if (ptr->grads[3][1] >= gradThresh) 
  count++; 
 if (ptr->grads[3][2] >= gradThresh) 
  count++; 
 if (ptr->grads[3][3] >= gradThresh) 
  count++; 
 
 return count; 
} 
 
int Image::closeToEdge(int row, int col, int offset) 
{ 
 int count = 0; 
 
 for (int k = 1; k <= offset; k++) 
 { 
  //room above 
  if (row > k - 1) 
   if (imClass.at<uchar>(row - k, col) == 0) 
    count++; 
 
  //room below 
  if (row < (ROWS - k)) 
   if (imClass.at<uchar>(row + k, col) == 0) 
    count++; 
 
  //room on left 
  if (col > k - 1) 
   if (imClass.at<uchar>(row, col - k) == 0) 
    count++; 
 
  //room on right 
  if (col < (COLS - k)) 
   if (imClass.at<uchar>(row, col + k) == 0) 
    count++; 
 } 
 
 return count; 
} 
 
int Image::getSize(int row, int col, Mat& checked) 
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{ 
 Vec3b red = { 0, 0, 255 }; 
 int count = 0; 
 
 if (checked.at<uchar>(row, col) != 255  
  && imOutClass.at<Vec3b>(row, col) == red) 
 { 
  count++; 
  checked.at<uchar>(row, col) = 255; 
  if (row > 0) 
   count += getSize(row - 1, col, checked); 
  if (row < (imOutClass.rows - 1)) 
   count += getSize(row + 1, col, checked); 
  if (col > 0) 
   count += getSize(row, col - 1, checked); 
  if (col < (imOutClass.cols - 1)) 
   count += getSize(row, col + 1, checked); 
 } 
 return count; 
} 
 
void Image::deleteChunk(int row, int col) 
{ 
 Vec3b red = { 0, 0, 255 }; 
 Vec3b white = { 255, 255, 255 }; 
 
 if (imOutClass.at<Vec3b>(row, col) == red) 
 { 
  imOutClass.at<Vec3b>(row, col) = white; 
  if (row > 0) 
   deleteChunk(row - 1, col); 
  if (row < (ROWS - 1)) 
   deleteChunk(row + 1, col); 
  if (col > 0) 
   deleteChunk(row, col - 1); 
  if (col < (COLS - 1)) 
   deleteChunk(row, col + 1); 
 } 
} 
 
void Image::getCounts(int row, int col, int& whiteCount, int& redCount, Mat& checked) 
{ 
 Vec3b red = { 0, 0, 255 }; 
 Vec3b pixel; 
 
 if (checked.at<uchar>(row, col) != 255 
  && imOutClass.at<Vec3b>(row, col)[2] % 2 == 1) //if unchecked and positive 
 { 
  whiteCount++; 
  pixel = imOutClass.at<Vec3b>(row, col); 
  if (pixel == red) 
   redCount++; 
  checked.at<uchar>(row, col) = 255; 
 
  if (row > 0) 
   getCounts(row - 1, col, whiteCount, redCount, checked); 
  if (row < (ROWS - 1)) 
   getCounts(row + 1, col, whiteCount, redCount, checked); 
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  if (col > 0) 
   getCounts(row, col - 1, whiteCount, redCount, checked); 
  if (col < (COLS - 1)) 
   getCounts(row , col + 1, whiteCount, redCount, checked); 
 } 
} 
 
void Image::deleteRed(int row, int col, Mat& checked) 
{ 
 Vec3b red = { 0, 0, 255 }; 
 Vec3b white = { 255, 255, 255 }; 
 
 if (imOutClass.at<Vec3b>(row, col)[2] % 2 
  && checked.at<uchar>(row, col) != 255) 
 { 
  checked.at<uchar>(row, col) = 255; 
  if (imOutClass.at<Vec3b>(row, col) == red) 
  { 
   imOutClass.at<Vec3b>(row, col) = white; 
  } 
  if (row > 0) 
   deleteRed(row - 1, col, checked); 
  if (row < (ROWS - 1)) 
   deleteRed(row + 1, col, checked); 
  if (col > 0) 
   deleteRed(row, col - 1, checked); 
  if (col < (COLS - 1)) 
   deleteRed(row, col + 1, checked); 
 } 
} 

 
 ReadPixels.cpp 
 
// ReadPixels.cpp : Defines the entry point for the console application. 
 
 
#include "stdafx.h" 
#include "opencv2/highgui.hpp" 
#include "opencv2/core.hpp" 
#include <string> 
#include <fstream> 
#include <iostream> 
 
#include "GradientImage.h" 
 
using namespace std; 
using namespace cv; 
 
void printAll(string, string); 
void printRow(int row, Mat image, ofstream& outFile); 
bool checkFile(string); 
 
int main(int argc, char* argv[]) 
{ 
 // Declare variables in scope for everything 
 string imageOriginalPath; 
 string imageClassifiedPath; 
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 string imageTrainPath; 
 string outImagePath; 
 string outImageClass; 
 string outImageTex; 
 string trainData; 
 int offset; 
 int color; 
 int high; 
 int low; 
 double percent; 
 string validData; 
 Image BigBoi; 
 bool goRun = false; 
 
 // ARG SET 1: texture only 
 // - color image 
 // - b/w image 
 // - output 
 // - offset 
 // - 0 for gray, 1 for color 
 // ARG SET 2: denoise 
 // - denoise image 
 // - output location 
 // - train data 
 
 if (argc == 5) //4 arguments, run denoise 
 { 
  imageTrainPath = argv[1]; 
  imageOriginalPath = argv[2]; 
  outImagePath = argv[3]; 
  trainData = argv[4]; 
  if (checkFile(imageOriginalPath) && checkFile(trainData)) 
  { 
   cout << "Beginning Denoise...   "; 
   BigBoi.setImage(imageOriginalPath, imageClassifiedPath); 
   BigBoi.denoise2(BigBoi.getPercentage(trainData, imageTrainPath)); 
   BigBoi.denoise1(4, 255); 
   BigBoi.saveClassified(outImagePath); 
   cout << "done" << endl; 
  } 
 } 
 else if (argc == 6) //4 arguments, run texture 
 { 
  imageOriginalPath = argv[1]; 
  imageClassifiedPath = argv[2]; 
  outImagePath = argv[3]; 
  offset = stoi(argv[4]); 
  color = stoi(argv[5]); 
  if (checkFile(imageOriginalPath) && checkFile(imageClassifiedPath)) 
  { 
   cout << "Getting Texture..."; 
   BigBoi.setImage(imageOriginalPath, imageClassifiedPath); 
   BigBoi.removeEdges(2); 
   if (color) 
   { 
    cout << "color version..."; 
    BigBoi.getColorGrads(offset); 
    BigBoi.getColorAvgGrads(offset); 



63 

    BigBoi.saveGradColorTexture(outImagePath); 
   } 
   else 
   { 
    cout << "gray version..."; 
    BigBoi.getTotalGrads(offset); 
    BigBoi.getTotalAvgGrads(offset); 
    BigBoi.saveGradTotalTexture(outImagePath); 
   } 
   cout << "done" << endl; 
  } 
 } 
 else 
 { 
  cout << "Invalid arguments" << endl; 
 } 
 return 0; 
} 
 
void printAll(string imagePath, string outFilePath) 
{ 
 Vec3b pixel; 
 
 Mat inImage = imread(imagePath, 1); 
 ofstream outFile; 
 outFile.open(outFilePath.c_str()); 
 
 for (int i = 0; i < inImage.rows; i++) 
 { 
  for (int j = 0; j < inImage.cols; j++) 
  { 
   outFile << i << "," << j << "," << (int)pixel[2] << "," << 
(int)pixel[1] 
    << "," << (int)pixel[0] << "\n"; 
  } 
 } 
} 
 
void printRow(int row, Mat inImage, ofstream& outFile) 
{ 
 Vec3b pixel; 
 
 int* redArr = new int[inImage.cols]; 
 int* greenArr = new int[inImage.cols]; 
 int* blueArr = new int[inImage.cols]; 
 
 
 for (int j = 0; j < inImage.cols; j++) 
 { 
  pixel = inImage.at<Vec3b>(row, j); 
  redArr[0] = pixel[2]; 
  greenArr[1] = pixel[1]; 
  blueArr[2] = pixel[0]; 
 } 
 
 for (int j = 0; j < inImage.cols; j++) 
 { 
  outFile << redArr[j] << "  "; 
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 } 
 outFile << endl; 
 for (int j = 0; j < inImage.cols; j++) 
 { 
  outFile << greenArr[j] << "  "; 
 } 
 outFile << endl; 
 for (int j = 0; j < inImage.cols; j++) 
 { 
  outFile << blueArr[j] << "  "; 
 } 
} 
 
bool checkFile(string fileName) 
{ 
 bool good = false; 
 
 //considered good if file opens 
 fstream infile; 
 infile.open(fileName.c_str()); 
 if (infile) 
  good = true; 
 else 
  cout << "Filepath <" << fileName << "> is incorrect" << endl; 
 infile.close(); 
 
 return good; 
} 
 
//  EXTRA DRIVERS 
/*  EXTRA DRIVERS   
 
  //CONTRAST TEXTURE 
//Image BigBoi(imageOriginalPath, imageClassifiedPath, offset); 
//BigBoi.removeEdges(2); 
//BigBoi.contrast(3, 1, 3); 
//BigBoi.saveConTexture(outImageTex); 
 
  //CLASSIFICATION 
//Image BigBoi(imageOriginalPath, imageClassifiedPath); 
//BigBoi.removeEdges(2);     //shave off pink-to-purple 
//BigBoi.readImage(offset);    //read gradients 
//BigBoi.getAvgGrads(offset);    //get avg 
//BigBoi.saveGradTexture(outImageTex); //save texture image for reference 
//BigBoi.classifyv4(42, 112);    //classify "between highest and 
lowest nucleoli values" 
//BigBoi.saveClassified(outImageClass); //save classified image! 
 
  //TRAINING DATA 
//Image BigBoi(imageOriginalPath, imageClassifiedPath, offset); 
//BigBoi.removeEdges(2); 
//BigBoi.readImage(offset); 
//BigBoi.getAvgGrads(offset); 
//BigBoi.readTrain(trainData); 
 
  //DENOISE ONLY 
//imageOriginalPath = argv[1]; //denoise image is in color 
//imageClassifiedPath = argv[1]; //this one doesn't matter in this case 
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//outImagePath = argv[2]; 
//trainData = argv[3]; 
//if (checkFile(imageOriginalPath) && checkFile(imageClassifiedPath)) 
//{ 
// cout << "Beginning Denoise...   "; 
// BigBoi.setImage(imageOriginalPath, imageClassifiedPath); 
// BigBoi.denoise2(BigBoi.getPercentage(trainData)); 
// BigBoi.denoise1(3, 255); 
// BigBoi.saveClassified(outImagePath); 
// cout << "done" << endl; 
// 
//  //ACCURACY ADD-ON 
// validData = argv[4]; 
// if (checkFile(validData)) 
//  BigBoi.accuracyEval(validData); 
//} 
 
//  //FULL DRIVER 
 /* 
 
 // Arg set 0: Grad Texture 
 //  original classified output offset 
 // Arg set 1: Classify 
 //  (...) trainData 
 // Arg set 2: Denoise 
 //  (...) (...) low high percent 
 // Arg set 3: Validation 
 //  (...) (...) (...) validData 
 
 if (argc >= 5) // Arg set 0, minimun required arguments 
 { 
  // Get arguments 
  imageOriginalPath = argv[1]; 
  imageClassifiedPath = argv[2]; 
  outImagePath = argv[3]; 
  outImageTex = outImagePath.substr(0, outImagePath.find_last_of(".")) + "-
tex.tif"; 
  outImageClass = outImagePath.substr(0, outImagePath.find_last_of(".")) + "-
class"; 
  offset = stoi(argv[4]); 
 
  // Do processing for this level: get texture metric 
  goRun = (checkFile(imageOriginalPath) && checkFile(imageClassifiedPath)); 
  if (goRun) 
  { 
   cout << "Getting texture... "; 
   BigBoi.setImage(imageOriginalPath, imageClassifiedPath); 
   BigBoi.removeEdges(2); 
   //BigBoi.getColorGrads(offset); 
   //BigBoi.getColorAvgGrads(offset); 
   //BigBoi.saveGradColorTexture(outImageTex); 
   BigBoi.getTotalGrads(offset); 
   BigBoi.getTotalAvgGrads(offset); 
   //BigBoi.saveGradTotalTexture(outImageTex); 
   cout << "done" << endl; 
  } 
 
  if (argc >= 6) // Arg set 1 
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  { 
   // Get arguments 
   trainData = argv[5]; 
 
   // Do processing for this level: Classify 
   goRun = (checkFile(trainData) && goRun); 
   if (goRun) 
   { 
    cout << "Classifying... "; 
    BigBoi.getSplits(trainData); 
    BigBoi.classifyv4(BigBoi.getLow(), BigBoi.getHigh()); 
    BigBoi.saveClassified(outImageClass + "-1.tif"); 
    cout << "done" << endl; 
   } 
  } 
  if (argc >= 9) // Arg set 2 
  { 
   // Get arguments 
   low = stoi(argv[6]); 
   high = stoi(argv[7]); 
   percent = stof(argv[8]); 
 
   // Do processing for this level: Denoise 
   if (goRun) 
   { 
    cout << "Cleaning up... "; 
    BigBoi.denoise2(percent); 
    BigBoi.saveClassified(outImageClass + "-2.tif"); 
    BigBoi.denoise1(low, high); 
    BigBoi.saveClassified(outImageClass + "-3.tif"); 
    cout << "done" << endl; 
 
    cout << "Parameters: " << endl; 
    cout << "   Offset: " << offset << endl; 
    cout << "   Classification Range: " << BigBoi.getLow() << ", " 
<< BigBoi.getHigh() << endl; 
    cout << "   Denoise Island Range: " << low << ", " << high << 
endl; 
    cout << "   Denoise Percent Threshold: " << percent << endl; 
   } 
  } 
  if (argc >= 10) // Arg set 3 
  { 
   // Get arguments 
   validData = argv[9]; 
 
   // Do processing for this level: Accuracy 
   goRun = (checkFile(validData) && goRun); 
   if (goRun) 
   { 
    BigBoi.accuracyEval(validData); 
   } 
  } 
  cout << "Processing finished" << endl; 
 } 
 else // argc < 5 
 { 
  std::cout << "Not enough arguments" << endl; 



67 

  std::cout << "Arg set 0: original_image classified_image out_image offset" 
<< endl; 
  std::cout << "Arg set 1: (arg0) train_data" << endl; 
  std::cout << "Arg set 2: (arg1) low high percent" << endl; 
  std::cout << "Arg set 3: (arg2) valid_data" << endl; 
 } 
*/ 
 
 

  
 
 

 Accuracy computation – the standard confusion matrix was used, where validation data 
listed pixels of Class 1 and Class 0. For nucleoli however, there is a slight variation where 
instead of receiving in validation data pixels of each class, the program receives a list of pixel 
coordinates for nuclei and whether they contain a visible nucleolus. 
  ConMatr.h 
 
#ifndef CONMATR_H 
#define CONMATR_H 
 
#include "stdafx.h" 
#include <iostream> 
#include <string> 
#include <fstream> 
#include "opencv2/highgui.hpp" 
#include "opencv2/core.hpp" 
 
using namespace std; 
using namespace cv; 
 
class ConMatr { 
private: 
 string valid; 
 Mat image; 
 int conMatr[2][2]; 
 int arrLen; 
 
 Vec3b nucleus = { 0, 0, 255 }; 
 Vec3b nucleoli = { 255, 0, 0 }; 
 Vec3b lumen = { 0, 255, 0 }; 
 Vec3b other = { 0, 0, 0 }; 
 
public: 
 ConMatr(string, string); 
 double getAccuracy(int);  //1 for nuclei, 2 for lumina, 3 for nucleoli 
 int isNucleus(int, int); 
 int isLumen(int, int); 
 int isNucleolus(int, int); 
 void getCounts(int, int, int&, int&, Mat&); 
 void print(); 
 
}; 
 
#endif 
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 ConMatr.cpp 
 
#include "stdafx.h" 
#include "ConMatr.h" 
 
ConMatr::ConMatr(string validFile, string imageFile) 
{ 
 for (int i = 0; i < 2; i++) 
  for (int j = 0; j < 2; j++) 
   conMatr[i][j] = 0; 
 
 valid = validFile; 
 image = imread(imageFile, 1); 
} 
 
double ConMatr::getAccuracy(int option) 
{ 
 string line; 
 int x, y; 
 string actualClassS; 
 int actualClass; 
 int predictedClass; 
 int count = 0; 
 
 ifstream inFile; 
 inFile.open(valid.c_str()); 
 getline(inFile, line); //junk header 
 while (!inFile.eof()) 
 { 
  // Get actual class 
  getline(inFile, actualClassS, ','); 
  if (actualClassS[0] == 'O') //shortcut check 
   actualClass = 0; 
  else 
   actualClass = 1; 
 
  getline(inFile, line, ','); 
  x = stoi(line); 
  getline(inFile, line, '\n'); 
  y = stoi(line); 
 
  if (option == 1) 
   predictedClass = isNucleus(y, x); 
  else if (option == 2) 
   predictedClass = isLumen(y, x); 
  else if (option == 3) 
   predictedClass = isNucleolus(y, x); 
 
  conMatr[actualClass][predictedClass]++; 
  count++; 
 } 
 
 double accuracy = (double)(conMatr[1][1] + conMatr[0][0]) / (double)count; 
 return accuracy; 
} 
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int ConMatr::isNucleus(int row, int col) 
{ 
 Vec3b pixel = image.at<Vec3b>(row, col); 
 if (pixel == nucleus || pixel == nucleoli) 
 { 
  return 1; 
 } 
 else 
 { 
  return 0; 
 } 
 
} 
 
int ConMatr::isLumen(int row, int col) 
{ 
 Vec3b pixel = image.at<Vec3b>(row, col); 
 if (pixel == lumen) 
 { 
  return 1; 
 } 
 else 
 { 
  return 0; 
 } 
} 
 
int ConMatr::isNucleolus(int row, int col) 
{ 
 int nucleusCount, nucloCount; 
 nucleusCount = nucloCount = 0; 
 Mat checked; 
 checked.create(image.rows, image.cols, CV_8UC1); 
 
 getCounts(row, col, nucleusCount, nucloCount, checked); 
 if (nucloCount == 0) 
  return 0; 
 else 
  return 1; 
} 
 
void ConMatr::getCounts(int row, int col, int& nucleusCount, int& nucloCount, Mat& 
checked) 
{ 
 Vec3b pixel = image.at<Vec3b>(row, col); 
 
 if (checked.at<uchar>(row, col) != 255  
  && (pixel == nucleus || pixel == nucleoli)) //if unchecked and in 
nucleus 
 { 
  nucleusCount++; 
  if (pixel == nucleoli) 
   nucloCount++; 
  checked.at<uchar>(row, col) = 255; 
 
  if (row > 0) 
   getCounts(row - 1, col, nucleusCount, nucloCount, checked); 
  if (row < (image.rows -1)) 
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   getCounts(row + 1, col, nucleusCount, nucloCount, checked); 
  if (col > 0) 
   getCounts(row, col - 1, nucleusCount, nucloCount, checked); 
  if (col < (image.cols - 1)) 
   getCounts(row, col + 1, nucleusCount, nucloCount, checked); 
 } 
} 
 
void ConMatr::print() 
{ 
 cout << "\t" << conMatr[0][0] << "\t" << conMatr[0][1] << endl; 
 cout << "\t" << conMatr[1][0] << "\t" << conMatr[1][1] << endl; 
}   
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 CancerAccuracy2.0.cpp 
 
// CancerAccuracy2.0.cpp : Defines the entry point for the console application. 
// 
 
#include "stdafx.h" 
#include <iostream> 
#include <string> 
#include <fstream> 
#include "opencv2/highgui.hpp" 
#include "opencv2/core.hpp" 
 
#include "ConMatr.h" 
 
using namespace std; 
using namespace cv; 
 
bool checkFile(string); 
 
 
int main(int argc, char* argv[]) 
{ 
 string validNucleus = argv[1]; 
 string validLumen = argv[2]; 
 string validNuclo = argv[3]; 
 string imagePath = argv[4]; 
 
 if (checkFile(validNucleus) && checkFile(validLumen) 
  && checkFile(validNuclo) && checkFile(imagePath)) 
 { 
   
  ConMatr nucleusMat(validNucleus, imagePath); 
  ConMatr lumenMat(validLumen, imagePath); 
  ConMatr nucloMat(validNuclo, imagePath); 
 
  double accuracyNucleus, accuracyLumen, accuracyNuclo; 
  accuracyNucleus = nucleusMat.getAccuracy(1); 
  accuracyLumen = lumenMat.getAccuracy(2); 
  accuracyNuclo = nucloMat.getAccuracy(3); 
 
  string fileName = imagePath.substr(imagePath.find_last_of('\\') + 1, 
imagePath.find('.')); 
  cout << "Accuracy for " << fileName << ": " << endl; 
  cout << "Nucleus Classification: " << accuracyNucleus * 100 << "%" << endl; 
  nucleusMat.print(); 
  cout << "Lumen Classificiation: " << accuracyLumen * 100 << "%" << endl; 
  lumenMat.print(); 
  cout << "Nucleolus Classification: " << accuracyNuclo * 100 <<"%" << endl; 
  nucloMat.print(); 
 } 
 
    return 0; 
} 
 
bool checkFile(string fileName) 
{ 
 bool good = false; 
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 //considered good if file opens 
 fstream infile; 
 infile.open(fileName.c_str()); 
 if (infile) 
  good = true; 
 else 
  cout << "Filepath <" << fileName << "> is incorrect" << endl; 
 infile.close(); 
 
 return good; 
} 
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