

NORTHWEST NAZARNE UNIVERSITY

Basketball Workout Application

Thesis

Submitted to the department of Mathematics and Computer Science

In partial fulfillment of the requirements

For the degree of

BACHELOR OF SCIENCE

Ethan McPherson

2021

Thesis

Submitted to the department of Mathematics and Computer Science

In partial fulfillment of the requirements

For the degree of

BACHELOR OF SCIENCE

Ethan McPherson

2021

Basketball Workout Application

Author:

 __

 Ethan McPherson

Approved:

 __

Dale Hamilton, Ph.D., Professor, Department of Mathematics and
Computer Science, Faculty Advisor

Approved:

 __

Anna Lee, Adjunct Professor, Department of Communication Arts

and Sciences, Second Reader

Approved:

 __

Barry L. Myers, Ph.D., Chair, Department of Mathematics and

Computer Science

iii

Abstract

Mobile application for sending and tracking basketball workouts between coaches
and players.

MCPHERSON, ETHAN (Department of Mathematics and Computer
Science),

MYERS, DR. BARRY (Department of Mathematics and Computer
Science)

Communication is key in the life of an athlete. This project is intended to help
collegiate athletes reach their full potential for communication with coaches about
workouts throughout the year. The main problem that this project sought to solve
was the ability for both the IOS and Android platforms to have a place where they
would receive the same information with no disconnect, eliminating a need for
coaches to require a certain platform in communicating with their players. The
next largest task was to give coaches the ability to send workouts to players on
their roster and not make them mandatory in order to comply with the countable
athletically related activity, or CARA, rules regarding workouts. Finally, the last
part of this project was to create a way for players to track their personal workouts
to see their growth in the off season. Future work includes data calculations to
allow athletes to see their growth as a player.

iv

Acknowledgements

 First of all, I would like to thank my mom, Melissa, my dad, Charles, and

siblings, Garrett, Cayden, and Macy. Without their love and support I would not

have been able to get through college and earn my degree. I would also like to

thank all of my basketball coaches, Paul Rush, Levi Stuart, Jon Hawkins, and

Chris Foss. Their constant outpour of support helped shape me into the man I am

today. Finally, I would like to thank Dr. Dale Hamilton and Dr. Barry Myers for

pushing me to work hard in all of my classes and reach for goals that might have

seemed out of reach in the beginning.

v

Table of Contents

Abstract __ iii

Acknowledgements ___ iv

Table of Figures __vii

Background __ 1

Xamarin __ 2

Firebase ___ 3

Realtime Database __ 4

Classes __ 5

Player Side __ 8

Coaching Side __ 9

Registering ___ 10

Different Pages for Users __ 11

Challenges__ 12

Results ___ 13

Future Work __ 13

References ___ 15

Appendices ___ 16

Appendix A – Functionality code: __ 16
Appendix A1 – CoachTeamInfo.xaml.cs ___ 16
Appendix A2 – CoachTeamRegistration.xaml.cs __________________________________ 18
Appendix A3 – CoachWorkoutEntry.xaml.cs _____________________________________ 20
Appendix A4 – CoachPlayerWorkouts.xaml.cs ____________________________________ 22
Appendix A5 – Dashboard.xaml.cs ___ 24
Appendix A6 – HomePage.xaml.cs ___ 28
Appendix A7 – LoginPage.xaml.cs __ 29
Appendix A8 – PlayerRegistration.xaml.cs _______________________________________ 32
Appendix A9 – RegistrationPage.xaml.cs __ 34
Appendix A10 – TeamWorkoutList.xaml.cs ______________________________________ 37
Appendix A11 – WorkoutEntry.xaml.cs ___ 39
Appendix A12 – WorkoutList.xaml.cs ___ 41
Appendix A13 – WorkoutViewPage.xaml.cs ______________________________________ 43
Appendix A14 – WorkoutViewPageP.xaml.cs _____________________________________ 45

vi

Appendix B – Styling code: ___ 47
Appendix B1 – CoachTeamInfo.xaml ___ 47
Appendix B2 – CoachTeamRegistration.xaml _____________________________________ 47
Appendix B3 – CoachWorkoutEntry.xaml __ 49
Appendix B4 – CoachPlayerWorkouts.xaml ______________________________________ 50
Appendix B5 – Dashboard.xaml ___ 51
Appendix B6 – HomePage.xaml ___ 53
Appendix B7 – LoginPage.xaml __ 54
Appendix B8 – PlayerRegistration.xaml ___ 55
Appendix B9 – RegistrationPage.xaml __ 56
Appendix B10 – TeamWorkoutList.xaml ___ 57
Appendix B11 – WorkoutEntry.xaml __ 58
Appendix B12 – WorkoutList.xaml ___ 59
Appendix B13 – WorkoutViewPage.xaml __ 60
Appendix B14 – WorkoutViewPageP.xaml _______________________________________ 61

Appendix C – Classes __ 62
Appendix C1 – DashboardMenu.cs ___ 62
Appendix C2 – FireBHelp.cs ___ 63
Appendix C3 – Team.cs __ 72
Appendix C4 – TeamWorkouts.cs __ 73
Appendix C5 – UserInfo.cs __ 74
Appendix C6 – Users.cs __ 76
Appendix C7 – UserSettings.cs __ 77
Appendix C8 – Workouts.cs __ 79

vii

Table of Figures
Figure 1: Table Setup of Firebase Database.. 4

Figure 2: FireBHelp Snippet .. 5

Figure 3: UserSettings Class .. 6

Figure 4: Workouts Class... 7

Figure 5: Player Personal Workout Page .. 8

Figure 6: Coaches Roster Page .. 9

Figure 7: Registration Page ... 10

Figure 8: Player's Side Dashboard ... 11

Figure 9: Coach’s Side Dashboard ... 11

https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023588
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023589
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023590
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023591
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023592
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023593
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023594
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023595
https://d.docs.live.net/6a5a50ea9edda1b2/Documents/Senior_Thesis_Ethan_McPherson.docx#_Toc68023596

1

Background
Communication is an important, if not the most important, aspect of any

team. This especially rings true for basketball teams. Any given person on the

team must know their role, where they personally are supposed to be at, what to

say to let their teammates know what is happening, and let others know where

they are supposed to be at. Outside of the gym, communication is just as

important for the team. Players must know when practices, film, meetings, and

workouts are. The workout application seeks to make communication about

optional summer workouts easier, as well as provide a way for players to track

their past workouts.

The idea for this project comes from some involvement over the past four

years with the Northwest Nazarene University (NNU) men’s basketball team.

Communicating over the summer with players by text is doable; however, with

some players having iPhones and others having Android, there were times when

texting all players at once became a problem. Not everyone would receive the

texts, making it difficult to hold conversations with everyone at once, and

multiple chats were needed to communicate. Because these conversations were

mainly about workouts, and shooting drills and conditioning, it was proposed that

an application should be created to allow coaches to send workouts to their

players, and for players to store and track past workouts that they have completed.

2

This project follows the process of the development of an app for athletes and

coaches that meets the needs of tracking and communication about workouts.

Xamarin
The first decision made was which language should be used to code this

application in. Android development is done mainly in Java. With having

experience in using Java, starting there seemed like the best option, but IOS does

not support Java development. Now, IOS has its own coding language called

Swift. Learning Swift would take up more development time and proved daunting

to try and learn a new language to code in, especially with the short amount of

time to get the application operational.

After a bit of research, the decision was made to code using a language

called Xamarin, whose sole purpose is the creation of cross-platform applications

and development. This would allow the code to be produced in one language and

then giving it the ability to be deployed on both Android and Apple products.

Xamarin uses a mixture of C# and HTML to create their applications.

With a small amount of knowledge in C#, some more practice and research were

needed in order to create an easy to use and functional user interface (UI). Along

with attention to details of application design, Xamarin has many integrated

libraries and most importantly a way to connect with a cloud database on both

platforms.

3

Firebase
 After deciding to use C# and Xamarin to create the application, it was time

to implement an important aspect that would provide some security,

authentication. Authentication is used to give access to certain users after they

authenticate their identity. The app intended to give only registered users access

to the application and the associated data, and to control who has access to it. A

connection with Google Firebase was established. Firebase is a platform

originally developed by an independent team in 2011 but was acquired by Google

in 2014. Google’s intended use is for mobile and web application developers.

More specifically it is a back-end as a service platform (BAAS). A BAAS is a

model for providing web app and mobile app developers with a way to link their

applications to back-end cloud storage and API’s exposed by backend

applications while also providing features such as user management, push

notifications, and integration with social networking services. This allows

developers to focus on the front-end of development such as the user interface and

the client-side logic.

 For the purposes of this project, Firebase worked extremely well. The

authentication that they provide is fairly light-weight, and it allowed the creation

of rules to let certain users read and write data. Now not everyone has access to

alter all information that is stored.

4

 Firebase not only provides the means to have user authentication, but

another service that they provide is a real time database. This database allows a

user to store the information about the workouts that they are doing, and it will

also allow a coach to add optional workouts that they want their players to

complete.

Realtime Database
 Along with some of the other features that Firebase offers, it provides their

users with access to a real time database. This database is a cloud-hosted

database. The data is stored as JSON, an open standard file format, and data

interchange format, that uses human-readable text to store and transmit data

objects (Figure 1).

This data is

synchronized in

real time to every

connected client.

The

synchronization is

to make sure all the information is relevant and consistent between all users.

Information becomes immediately visible to anyone who is utilizing the app.

Another feature of the database that is offered is that Firebase applications

remain responsive even when offline. The Firebase database SDK persists the

data to the disk. Once a connectivity is reestablished, then a user will receive all

Figure 1: Table Setup of Firebase Database

5

the updates to any information that was made by a user. This feature is important

because the workouts that were added while offline will still be available for

viewing by players and coaches even when they go offline, and then updating the

database as soon as they are connected again.

Classes
 In order to give a user access to the information that they needed, as well

as a way to store all of the information as an entry in the database, the use of

classes was implemented. In the project there are a total of eight classes, and they

can be split into two categories to help describe the role that they have in the

application. The first four classes can be labeled as utility. This group includes a

class that is dedicated to the declaration of functions to be used with the Firebase

database called FireBHelp (Figure 2). The functions in the class use C.R.U.D

which stands for create, read, update, and delete. These functions involve adding

and deleting players, adding and deleting teams, adding and deleting workouts,

Figure 2: FireBHelp Snippet

6

updating teams, updating user information, as well as functions to search for

entries within the database and return them.

The next one is a class called DashboardMenu. This class functions as a

driver into the main layout of the application. This class allows for a master detail

page to display all the other pages of the application in a left sidebar menu. On

top of that, it allows a custom picture and display of the menu, showing the

current users email, and a main logo for the app.

The third and fourth classes build off each other, and they are the UserInfo

and the UserSettings. The

UserInfo class stores a

user’s information as an

object to be used by the

UserSettings. The

UserSettings class is used

to set the application

settings of the local

device to the current user,

which has been collected

from the firebase

database upon login (Figure 3).

The UserSettings/UserInfo information is also used in the creation of a workout as

well as displaying all the past workouts that a player has saved.

Figure 3: UserSettings Class

7

The second set of classes all have one goal in common: to store

information as an object. These classes are named Users, Team, Workouts, and

TeamWorkouts. The Users class stores all the information of each individual,

both coaches and players, an associated email address, a unique I.D, their name, a

team name, the sport they participate in, their role on the team, and the team code.

This team code will connect the user to their coach and their team.

The Team class stores the team name, a unique I.D, the sport type, and the

name of the coach. This creates a connection between the coach and player tables

in the database.

The Workout class is used by players to store a workout type, a user

component, the time created, a description, the sport, who completed it, and an

option to make the workout visible to the coach (Figure 4). The send workout

option is an important

addition to the individual

workouts. During the

summer, college coaches are

not able to make any

workouts or sessions

mandatory as per the CARA

rules. By having the send

workout option, it allows this
Figure 4: Workouts Class

8

application to be used year-round by coaches, rather than having access to it only

at certain times.

Finally, the TeamWorkouts class is used by a coach to send the workouts

they have created to the players. When a team workout is created, the workout is

stored and appears as a list to the players, starting with the most recently added

one. Coaches are not able to view who does the workouts, but they do have the

option to delete a workout so that it does not clutter or take up too much space

within the database.

Player Side
 As a player using the application, players have access to options that will

help improve their skill set. They have the ability to store any workout they

choose. In the workout creation page, there are

three options for the type of workout that a player

might complete, both while in and out of season.

The options are Weightlifting, Conditioning, or

Sport Specific. The goal for this is to make the

application usable by any sport later on. When

players save a workout, they will enter in a short

description of the workout. This ranges from the

repetitions they completed, to the time taken, all

the way down to the specific moves they worked

on (Figure 5). By having the descriptions
Figure 5: Player Personal Workout
Page

9

identifying what they did, players will be able to look back at their past workouts

and see the progress they have made.

 Players will have access to see the workouts that their coach creates as

well. A separate page in the application was created allowing players to clearly

see what the workout to be completed is. The page is set up to display the type of

workout in chronological order. Underneath the declared type of workout is a

description of the rest of the workout, i.e., how many reps, how much they should

be expecting to lift, and if they need to do any conditioning or other extra

additions to the workout.

Coaching Side
This application is intended to be utilized by coaches to send workouts to their

players, and the goal was to make the application practical

and easy for them to enter in a workout. Coaches also

need access to see the workouts their players send to

them. The coaches have an easy workout entry page as

well as a team info page, which shows all players that are

signed up to the application using the team code

associated with the coach and team. From this page, A

coach should be able to click on the player’s name, and

have a page display the workouts players have opted to

share with their coach (Figure 6).

Figure 6: Coaches Roster
Page

10

 In a tradeoff for having access to the team roster page, a coach does not

have access to create individual workouts. Because of this, the application will not

have a clutter of pages in the sidebar menu. Coaches have no need for entering

individual workouts either, so taking this away saves space within the database.

This will save time accessing workouts while using the application.

Registering
 When a user first registers for the application, they will have the option to

select whether they are a player or a coach. If coach

is selected then it will store their name, email, a

unique randomly generated I.D, a team code, and a

team name. (Figure 7).

 When a user registers and the player box is

checked, it will store the same information except it

will require players to enter in a team code that a

coach gives to them. This way it will connect all the

users to the same team and team code, allowing

easier and more secure access to the information

being stored in the workout tables of the database, as well as give them access

within the application to the pages that they need to have a quality experience

with the app.

Figure 7: Registration Page

11

Different Pages for Users

After a user is registered, the application will take them back to the login

page. The user then enters their credentials, and the app will bring them to the

home page of the app giving a small overview of the

application.

 When a user logs in, the unique I.D is retrieved

from the database, then saved locally in the application.

This will give the application the information it needs to

store a workout and then later on, go and find the

information when a user is looking at the past workouts

page.

 When the login button is

hit, the application will use the

authentication and email of the user to see whether or not

a player, or coach is the one logging in. If it is a player

(Figure 8), then they will have the workout entry, team

workout, and workout view pages. If it is a coach that

just logged in (Figure 9), then they will have the team

workout entry, and a team roster info page. Thanks to the

user settings, the app is able to seamlessly divide which

user will have access to which page. Figure 9: Coach’s Side
Dashboard

Figure 8: Player's Side
Dashboard

12

 Within the pages, if a coach is going to have access to a certain feature and

the players are not allowed to have the same access, then the user settings will

also help to determine what is available on each page for each separate user.

Challenges
 One of the biggest challenges faced in the creation of this application, was

what kind of database was going to be used. The original idea was to store the

information about individual workouts and user settings on the device in a local

database file and having the information for it locally. This worked in the

beginning of the development because it would not require a connection to the

internet in order to store a workout that was going to be done. While testing the

application, it was discovered that even if a user logged in and authenticated

themselves, the information about personal workouts was being stored locally on

the phone, making the information available to anyone using the application on

another user’s phone, giving access to the device owner’s workouts. For this

reason, the decision was made to store all the information in a database online and

not on the phone. Using a cloud database essentially eliminated the possibility of

a player having access to information that was not theirs.

 Another challenge that showed itself was the creation of the different

tables in the database. The original idea was to have one table for a team object

but there was a hard time storing a list of names in the roster object on the team

table. To work with this, a table was created for teams, coaches, and players.

These tables are all connected using the Team Code as a key. This allows coaches

13

to have access to their team information and it allows players to have access to the

same information, except they will also have access to see workouts that they

have saved in the past.

Results
 As of now the application is able to be deployed on both IOS and Android

software. It is running smoothly at this time, and players are able to track their

workouts and coaches are able to send workouts that they want players to

complete..

 At this time, the application is also compliant with CARA rules and

should be able to be used during the summer because the workouts that are saved

and tracked are for the player’s use and purpose only. Coaches are not able to see

a workout completed by a player unless they have specifically marked the

workout as one that will be sent to the coach.

Future Work
Right now, the application is only operational for the sport of basketball. If

the use of the application provides more ease for coaches and allows players to

help develop their game and track their progress as a player, then a plan to deploy

the application for use with other sports outside of basketball should be

implemented. With the way the workout entry page is setup, it stores the

description of a workout as a string, allowing a possibility for use with other

sports teams. It also has the labels set as sport specific, so a coach should be able

to use it for any sport team.

14

 The next large update to be performed is the option for displaying a

player’s shooting percentage for the workouts that they have been doing. With the

workout entry being stored as a string, it is harder to perform mathematical

operations on the information. By changing the type of information that a workout

will be stored as, with access to more information like shooting percentage and

how many times a move is performed, then a player will be able to see the stats

they need to work on to improve their skills both during the season and over the

summer.

 All in all, this is a very good start for an application that has the potential

to change the way that a player sees their game, and it will help coaches to track

the stats of their players as well, but only at times that the players want to send the

workout (only relevant during the summer).

 It would not even have to be used solely by college coaches but has the

potential to be used by personal trainers, high school and junior high coaches, and

potentially all the way up to the professional level. The possibilities are endless,

and this app can help the development of all athletes at any level.

15

References
Google, (2021, February 7). “Firebase Security Rules Documentation”

Basic Security Rules | Firebase (google.com).

Balarju, Venkay, V.B (2018, May 17). “Learn about user settings in

Xamarin.Forms”. C Sharp Corner. Learn About User Settings in Xamarin.Forms

(c-sharpcorner.com).

16

Appendices
Appendix A – Functionality code:
 Appendix A1 – CoachTeamInfo.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class CoachTeamInfo : ContentPage

 {

 readonly FirebHelp firebaseHelper = new FirebHelp();

 public CoachTeamInfo()

 {

 InitializeComponent();

 }

 protected async override void OnAppearing()

 {

17

 base.OnAppearing();

 var role = "Player";

 var sport = UserSettings.Sport;

 var team = UserSettings.TeamName;

 var players = await firebaseHelper.GetTeamRoster(role, sport, team);

 Roster.ItemsSource = players;

 }

 async void OnPlayerSelection(Object sender, SelectedItemChangedEventArgs e)

 {

 if (e.SelectedItem != null)

 {

 PlayWSet.ClearData();

 var tappedPlayer = e.SelectedItem.ToString();

 await firebaseHelper.GetPlayer(tappedPlayer);

 PlayWSet.Name = tappedPlayer;

 PlayWSet.Sport = UserSettings.Sport;

18

 PlayWSet.SendWorkout = "true";

 await Navigation.PushAsync(new NavigationPage(new

CoachPlayerWorkouts()));

 }

 }

 }

}

 Appendix A2 – CoachTeamRegistration.xaml.cs

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class CoachTeamRegistration : ContentPage

 {

 readonly FirebHelp firebaseHelper = new FirebHelp();

19

 public CoachTeamRegistration()

 {

 InitializeComponent();

 }

 public async void TeamRegButton_Clicked(Object sender, EventArgs e)

 {

 Random CoachIdGen = new Random();

 Random TeamCodeGen = new Random();

 int coachId = CoachIdGen.Next(1, 100000);

 int teamCode = TeamCodeGen.Next(1, 100000);

 string coach = Name.Text;

 string team = TName.Text;

 string role = "Coach";

 string email = UserSettings.Email;

 string sp = SportPick.SelectedItem.ToString();

 await firebaseHelper.AddCoach(role, email, coachId, coach, team, sp, teamCode);

20

 await firebaseHelper.AddTeam(TName.Text, teamCode, Name.Text, sp);

 Name.Text = string.Empty;

 TName.Text = string.Empty;

 await App.Current.MainPage.DisplayAlert("Team Code", "Your Team Code is " +

teamCode, "Next");

 await App.Current.MainPage.DisplayAlert("Success", "Coaches Team Registered",

"Continue");

 await Navigation.PushAsync(new LoginPage());

 }

 }

}

 Appendix A3 – CoachWorkoutEntry.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

21

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class CoachWorkoutEntry : ContentPage

 {

 readonly FirebHelp firebaseHelper = new FirebHelp();

 public CoachWorkoutEntry()

 {

 InitializeComponent();

 }

 async void OnSaveClicked(Object sender, EventArgs e)

 {

 string userComponent = UserSettings.TeamCode;

 string sport = UserSettings.Sport;

 string type = WorkType.SelectedItem.ToString();

 string description = WorkSum.Text;

 string timeCreated = DateTime.Now.ToString();

22

 await firebaseHelper.AddWorkout(userComponent, timeCreated, sport, type,

description);

 await Navigation.PopAsync();

 }

 }

}

 Appendix A4 – CoachPlayerWorkouts.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class CoachPlayerWorkouts : ContentPage

 {

 readonly FirebHelp firebaseHelper = new FirebHelp();

 public CoachPlayerWorkouts()

23

 {

 InitializeComponent();

 }

 protected async override void OnAppearing()

 {

 base.OnAppearing();

 var playerWorkouts = await firebaseHelper.GetPlayerWorkouts(PlayWSet.Name,

PlayWSet.Sport, PlayWSet.SendWorkout);

 PlayerWorkoutList.ItemsSource = playerWorkouts;

 }

 public async void OnItemSelection(Object Sender, SelectedItemChangedEventArgs

e)

 {

 if(e.SelectedItem != null)

 {

 await Navigation.PushAsync(new WorkoutViewPageP

 {

 BindingContext = e.SelectedItem as Workouts

 });

 }

 }

 }

}

24

 Appendix A5 – Dashboard.xaml.cs

using Firebase.Auth;

using Newtonsoft.Json;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Essentials;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class Dashboard : MasterDetailPage

 {

 public string firebaseAPIKey = "AIzaSyB7J0wlqzW8sx-W_DFpqMOwbX5sEKqOXvI";

 public List<DashboardMenu> MenuItems { get; set; }

 public Dashboard()

 {

 InitializeComponent();

25

 GetProfileInfoAndRefToken();

 MenuItems = new List<DashboardMenu>();

 var teamWorkout = new DashboardMenu() { Title = "Team Workouts", Icon =

"WorkoutPage.png", TargetType = typeof(TeamWorkoutList) };

 var infoPage = new DashboardMenu() { Title = "Home", Icon =

"WorkoutEntries.png", TargetType = typeof(HomePage) };

 var workoutListPage = new DashboardMenu() { Title = "Personal Workouts", Icon

= "workEnter.png", TargetType = typeof(WorkoutListPage) };

 var logoutListItem = new DashboardMenu() { Title = "Logout", Icon =

"Logout.png", TargetType = typeof(LoginPage) };

 var teamInfo = new DashboardMenu() { Title = "Team Roster", Icon =

"TeamPage.png", TargetType = typeof(CoachTeamInfo) };

 if(UserSettings.Role == "Coach")

 {

 MenuItems.Add(teamInfo);

 }

 else if(UserSettings.Role == "Player")

 {

 MenuItems.Add(workoutListPage);

 }

26

 MenuItems.Add(teamWorkout);

 MenuItems.Add(infoPage);

 MenuItems.Add(logoutListItem);

 navDrawer.ItemsSource = MenuItems;

 Detail = new

NavigationPage((Page)Activator.CreateInstance(typeof(HomePage)));

 this.BindingContext = new

 {

 Header = "Workout Tracking Application",

 Image = "LoginImage.png",

 Footer = UserSettings.Email

 };

 }

 async void OnPageSelected(Object sender, SelectedItemChangedEventArgs e)

 {

 var item = (DashboardMenu)e.SelectedItem;

 Type page = item.TargetType;

 if (e.SelectedItem.ToString() == "Logout")

 {

 Preferences.Remove("FirebaseRefreshToken");

27

 UserSettings.ClearAllData();

 Detail = new NavigationPage((Page)(new NavigationPage(new LoginPage())));

 IsPresented = false;

 }

 else

 {

 Detail = new NavigationPage((Page)Activator.CreateInstance(page));

 IsPresented = false;

 }

 }

 async private void GetProfileInfoAndRefToken()

 {

 var authProv = new FirebaseAuthProvider(new FirebaseConfig(firebaseAPIKey));

 try

 {

28

 var savedAuth =

JsonConvert.DeserializeObject<Firebase.Auth.FirebaseAuth>(Preferences.Get("Firebase

RefreshToken", ""));

 var RefCont = await authProv.RefreshAuthAsync(savedAuth);

 Preferences.Set("FirebaseRefreshToken",

JsonConvert.SerializeObject(RefCont));

 }

 catch(Exception ex)

 {

 Console.WriteLine(ex.Message);

 await App.Current.MainPage.DisplayAlert("LogAlert", "Token has Expired",

"Ok");

 }

 }

 }

}

 Appendix A6 – HomePage.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

29

using System.Threading.Tasks;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class HomePage : ContentPage

 {

 public HomePage()

 {

 InitializeComponent();

 }

 }

}

 Appendix A7 – LoginPage.xaml.cs

using Firebase.Auth;

using Newtonsoft.Json;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.CompilerServices;

using System.Text;

using System.Threading.Tasks;

30

using WorkoutLogSP.ViewModels;

using Xamarin.Essentials;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class LoginPage : ContentPage

 {

 public LoginPage()

 {

 InitializeComponent();

 }

 public string firebaseAPIKey = "AIzaSyB7J0wlqzW8sx-W_DFpqMOwbX5sEKqOXvI";

 readonly FirebHelp firebase = new FirebHelp();

 async void LoginClicked(Object sender, EventArgs e)

 {

 var authProv = new FirebaseAuthProvider(new FirebaseConfig(firebaseAPIKey));

 try

 {

31

 var authorize = await

authProv.SignInWithEmailAndPasswordAsync(EmailLoginEntry.Text,

PasswordLoginEntry.Text);

 var cont = await authorize.GetFreshAuthAsync();

 var serialCont = JsonConvert.SerializeObject(cont);

 Preferences.Set("FirebaseRefreshToken", serialCont);

 UserSettings.Email = EmailLoginEntry.Text;

 var user = await firebase.GetUser(EmailLoginEntry.Text);

 if (user != null)

 {

 UserSettings.Role = user.Role.ToString();

 UserSettings.ID = user.ID.ToString();

 UserSettings.Name = user.Name.ToString();

 UserSettings.TeamCode = user.TeamCode.ToString();

 UserSettings.TeamName = user.TeamName.ToString();

 UserSettings.Sport = user.Sport.ToString();

 }

 App.Current.MainPage = new Dashboard();

 }

 catch(Exception ex)

 {

 await App.Current.MainPage.DisplayAlert("Login Alert", ex.Message, "Ok");

32

 }

 }

 async void RegisterClicked(Object sender, EventArgs e)

 {

 await Navigation.PushAsync(new RegistrationPage());

 }

 }

}

 Appendix A8 – PlayerRegistration.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class PlayerRegistration : ContentPage

 {

33

 readonly FirebHelp firebaseHelper = new FirebHelp();

 public PlayerRegistration()

 {

 InitializeComponent();

 }

 public async void PlayRegButton_Clicked(Object sender, EventArgs e)

 {

 Random PlayerIdGen = new Random();

 int playerId = PlayerIdGen.Next(1, 100000);

 string player = pName.Text;

 string sport = SportPick.SelectedItem.ToString();

 string role = "Player";

 string email = UserSettings.Email;

 int teamCode = Convert.ToInt32(tCode.Text);

 string teamName = tName.Text;

 await firebaseHelper.AddPlayer(role, email, playerId, player, teamName, sport,

teamCode);

34

 pName.Text = string.Empty;

 tCode.Text = string.Empty;

 await App.Current.MainPage.DisplayAlert("Success", "Player Added to team",

"Continue");

 await Navigation.PushAsync(new LoginPage());

 }

 }

}

 Appendix A9 – RegistrationPage.xaml.cs

using Firebase.Auth;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class RegistrationPage : ContentPage

35

 {

 public string firebaseAPIKey = "AIzaSyB7J0wlqzW8sx-W_DFpqMOwbX5sEKqOXvI";

 public RegistrationPage()

 {

 InitializeComponent();

 }

 async void RegisterClicked(Object sender, EventArgs e)

 {

 try

 {

 if (CoachesBox.IsChecked)

 {

 var authProvider = new FirebaseAuthProvider(new

FirebaseConfig(firebaseAPIKey));

 var auth = await

authProvider.CreateUserWithEmailAndPasswordAsync(EmailEntry.Text,

PasswordEntry.Text);

 string getToken = auth.FirebaseToken;

 await App.Current.MainPage.DisplayAlert("Success", "Registered

Successfully", "OK");

 UserSettings.Email = EmailEntry.Text;

 await Navigation.PushAsync(new CoachTeamRegistration());

 }

36

 else if(PlayersBox.IsChecked)

 {

 var authProvider = new FirebaseAuthProvider(new

FirebaseConfig(firebaseAPIKey));

 var auth = await

authProvider.CreateUserWithEmailAndPasswordAsync(EmailEntry.Text,

PasswordEntry.Text);

 string getToken = auth.FirebaseToken;

 await App.Current.MainPage.DisplayAlert("Success", "Registered

Successfully", "OK");

 UserSettings.Email = EmailEntry.Text;

 await Navigation.PushAsync(new PlayerRegistration());

 }

 else

 {

 await App.Current.MainPage.DisplayAlert("Alert", "Must Select Player or

Coach", "Ok");

 await Navigation.PushAsync(new RegistrationPage());

 }

 }

 catch (Exception exc)

 {

 await App.Current.MainPage.DisplayAlert("Alert", exc.Message, "OK");

 }

37

 }

 }

}

 Appendix A10 – TeamWorkoutList.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class TeamWorkoutList : ContentPage

 {

 readonly FirebHelp firebaseHelper = new FirebHelp();

 public TeamWorkoutList()

 {

 InitializeComponent();

 if(UserSettings.Role == "Coach")

38

 {

 addBtn.IsEnabled = true;

 addBtn.IsVisible = true;

 }

 else

 {

 addBtn.IsEnabled = false;

 addBtn.IsVisible = false;

 }

 }

 protected async override void OnAppearing()

 {

 base.OnAppearing();

 var workouts = await firebaseHelper.GetAllWorkouts(UserSettings.TeamCode);

 TeamWorkouts.ItemsSource = workouts;

 }

 async void AddWorkoutClicked(Object sender, EventArgs e)

 {

 await Navigation.PushAsync(new CoachWorkoutEntry

 {

 BindingContext = new TeamWorkouts()

39

 });

 }

 async void OnItemSelection(Object sender, SelectedItemChangedEventArgs e)

 {

 if (e.SelectedItem != null)

 {

 await Navigation.PushAsync(new WorkoutViewPage

 {

 BindingContext = e.SelectedItem as TeamWorkouts

 });

 }

 }

 }

}

 Appendix A11 – WorkoutEntry.xaml.cs

using System;

using System.IO;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Xamarin.Forms;

40

using Xamarin.Forms.Xaml;

using WorkoutLogSP.ViewModels;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class WorkoutEntry : ContentPage

 {

 readonly FirebHelp firebaseHelper = new FirebHelp();

 public WorkoutEntry()

 {

 InitializeComponent();

 }

 async void OnSaveClicked(object sender, EventArgs e)

 {

 string userComponent = UserSettings.ID;

 string personCompleted = UserSettings.Name;

 string sport = UserSettings.Sport;

 string type = WorkType.SelectedItem.ToString();

 string description = WorkSum.Text;

41

 string timeCreated = DateTime.Now.ToString();

 string sendWorkout = "false";

 if(sendToCoach.IsChecked)

 {

 sendWorkout = "true";

 }

 await firebaseHelper.AddPersonalWorkout(userComponent, personCompleted,

timeCreated, sport, type, description, sendWorkout);

 await Navigation.PopAsync();

 }

 }

}

 Appendix A12 – WorkoutList.xaml.cs

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

42

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class WorkoutListPage : ContentPage

 {

 readonly FirebHelp firebaseHelper = new FirebHelp();

 public WorkoutListPage()

 {

 InitializeComponent();

 }

 protected async override void OnAppearing()

 {

 base.OnAppearing();

 var workouts = await firebaseHelper.GetPersonalWorkouts(UserSettings.ID);

 WorkoutList.ItemsSource = workouts;

 }

43

 async void AddWorkoutClicked(Object sender, EventArgs e)

 {

 await Navigation.PushAsync(new WorkoutEntry

 {

 BindingContext = new Workouts()

 });

 }

 async void OnItemSelection(Object sender, SelectedItemChangedEventArgs e)

 {

 if(e.SelectedItem != null)

 {

 await Navigation.PushAsync(new WorkoutViewPageP

 {

 BindingContext = e.SelectedItem as Workouts

 });

 }

 }

 }

}

 Appendix A13 – WorkoutViewPage.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

44

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class WorkoutViewPage : ContentPage

 {

 readonly FirebHelp firebseHelper = new FirebHelp();

 public WorkoutViewPage()

 {

 InitializeComponent();

 if(UserSettings.Role == "Coach")

 {

 Del.IsVisible = true;

 Del.IsEnabled = true;

 }

 else

 {

 Del.IsVisible = false;

 Del.IsEnabled = false;

 }

45

 }

 async void OnDeleteClicked(Object sender, EventArgs e)

 {

 string userComp = UserSettings.TeamCode;

 string time = timeCreated.Text.ToString();

 await firebseHelper.DeleteWorkout(userComp, time);

 await Navigation.PopAsync();

 }

 }

}

 Appendix A14 – WorkoutViewPageP.xaml.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using WorkoutLogSP.ViewModels;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

46

namespace WorkoutLogSP.Views

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class WorkoutViewPageP : ContentPage

 {

 readonly FirebHelp firebseHelper = new FirebHelp();

 public WorkoutViewPageP()

 {

 InitializeComponent();

 }

 async void OnDeleteClicked(Object sender, EventArgs e)

 {

 string userComp = UserSettings.ID;

 string time = timeCreated.Text.ToString();

 await firebseHelper.DeletePersonalWorkout(userComp, time);

 await Navigation.PopAsync();

 }

 }

}

47

Appendix B – Styling code:
 Appendix B1 – CoachTeamInfo.xaml
<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.CoachTeamInfo"

 BackgroundColor="Black">

 <ContentPage.Content>

 <StackLayout>

 <ListView x:Name="Roster" Margin="20" ItemSelected="OnPlayerSelection">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell x:Name="PlayerCell" Text="{Binding Name}"

TextColor="White"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

 Appendix B2 – CoachTeamRegistration.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.CoachTeamRegistration"

 BackgroundColor="Black"

48

 NavigationPage.HasNavigationBar="False">

 <ContentPage.Content>

 <StackLayout Orientation="Vertical" HorizontalOptions="CenterAndExpand"

VerticalOptions="CenterAndExpand">

 <Label x:Name="Greetings" Text="Welcome Coach" TextColor="White"

FontSize="18"/>

 <Label x:Name="ThankYou" Text="Thank you for registering. Please enter the

information below." TextColor="White"/>

 <Label x:Name="CoachName" Text="Name:" TextColor="White"/>

 <Entry Placeholder="First Last" x:Name="Name" BackgroundColor="White"/>

 <Label x:Name="TeamName" Text="Team Name:" TextColor="White"/>

 <Entry Placeholder="Team Name" x:Name="TName"

BackgroundColor="White"/>

 <Label x:Name="SportType" Text="Select a sport: " TextColor="White"/>

 <Picker x:Name="SportPick" FontSize="Large" TextColor="Black"

BackgroundColor="White">

 <Picker.ItemsSource>

 <x:Array Type="{x:Type x:String}">

 <x:String>Men's Basketball</x:String>

 </x:Array>

 </Picker.ItemsSource>

 </Picker>

 <Button x:Name="TeamRegistrationButton" Text="Enter" TextColor="Black"

BackgroundColor="White" WidthRequest="115" Clicked="TeamRegButton_Clicked"/>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

49

 Appendix B3 – CoachWorkoutEntry.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.CoachWorkoutEntry"

 BackgroundColor="Black"

 NavigationPage.HasNavigationBar="False">

 <ContentPage.Content>

 <StackLayout>

 <Label Text="Workout Entry Page:" FontAttributes="Bold" TextColor ="White"

FontSize="Large" VerticalOptions="Start" HorizontalOptions="CenterAndExpand"/>

 <Label FontAttributes="Bold" Text="Select Workout Type:" TextColor="White"/>

 <Picker x:Name="WorkType" FontSize="Large" TextColor="Black"

BackgroundColor="White">

 <Picker.ItemsSource>

 <x:Array Type="{x:Type x:String}">

 <x:String>Sport Specific</x:String>

 <x:String>Strength Related</x:String>

 <x:String>Conditioning</x:String>

 </x:Array>

 </Picker.ItemsSource>

 </Picker>

 <Label FontAttributes="Bold" Text="Workout Description:" TextColor="White"/>

 <Editor x:Name="WorkSum" BackgroundColor="White" Placeholder="Brief

description of Workout..." HeightRequest="300"/>

 <Button Text="Save" Clicked="OnSaveClicked" TextColor="Black"

BackgroundColor="White"/>

 </StackLayout>

50

 </ContentPage.Content>

</ContentPage>

 Appendix B4 – CoachPlayerWorkouts.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.CoachPlayerWorkouts"

 BackgroundColor="Black"

 NavigationPage.HasNavigationBar="False"

 >

 <ContentPage.Content>

 <StackLayout>

 <ListView x:Name="PlayerWorkoutList" Margin="20"

ItemSelected="OnItemSelection">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Description}" Detail="{Binding CurrTime}"

TextColor="White" DetailColor="White"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

51

 Appendix B5 – Dashboard.xaml

<?xml version="1.0" encoding="utf-8" ?>

<MasterDetailPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:local="clr-namespace:WorkoutLogSP.Views"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.Dashboard"

 Title="Dashboard">

 <MasterDetailPage.Master>

 <ContentPage Title="Menu"

 BackgroundColor="Black">

 <StackLayout Orientation="Vertical">

 <Label Text="{Binding Header}"/>

 <Image Source="{Binding Image}" Aspect="AspectFit"/>

 <Label Text="{Binding Footer}" TextColor="White" FontSize="Small"

HorizontalTextAlignment="Center"/>

 <ListView x:Name="navDrawer"

 RowHeight="45"

 SeparatorVisibility="Default"

 SeparatorColor="Black"

 BackgroundColor="White"

 ItemSelected="OnPageSelected">

52

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <StackLayout VerticalOptions="FillAndExpand"

 Orientation="Horizontal"

 Padding="20,10,0,10"

 Spacing="20">

 <Image Source="{Binding Icon}"

 WidthRequest="40"

 HeightRequest="40"

 VerticalOptions="Start"/>

 <Label Text="{Binding Title}"

 FontSize="Small"

 VerticalOptions="End"

 TextColor="Black"/>

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

53

 </StackLayout>

 </ContentPage>

 </MasterDetailPage.Master>

</MasterDetailPage>

 Appendix B6 – HomePage.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.HomePage"

 NavigationPage.HasBackButton="False"

 Title="Home Page"

 BackgroundColor="Black">

 <ContentPage.Content>

 <StackLayout>

 <Label Text="Welcome to the Elite workout app, it does the following:

* Track individual workouts

* Send workouts to players and

coaches

* Keep track of your roster
 " FontSize="Large"

TextColor="White" Margin="15,25,15,25"/>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

54

 Appendix B7 – LoginPage.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.LoginPage"

 BackgroundColor="Black"

 NavigationPage.HasNavigationBar="False">

 <ContentPage.Content>

 <StackLayout Orientation="Vertical" Margin="10,0,10,0"

VerticalOptions="CenterAndExpand">

 <Entry Placeholder="Email" x:Name="EmailLoginEntry"

BackgroundColor="White" VerticalOptions="Center"/>

 <Entry Placeholder="Password" BackgroundColor="White" IsPassword ="True"

x:Name="PasswordLoginEntry" VerticalOptions="Center"/>

 <Button Text="Login" BackgroundColor="White" TextColor="Black"

Clicked="LoginClicked" VerticalOptions="Center"/>

 <StackLayout Orientation="Vertical" VerticalOptions="End">

 <Label Text="Haven't Registered? Click below" TextColor="White"

FontSize="Small" FontAttributes="Italic" VerticalOptions="End"/>

 <Button Text="Register" BackgroundColor="White" TextColor="Black"

Clicked="RegisterClicked" VerticalOptions="End"/>

 </StackLayout>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

55

 Appendix B8 – PlayerRegistration.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.PlayerRegistration"

 BackgroundColor="Black"

 NavigationPage.HasNavigationBar="False">

 <ContentPage.Content>

 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand"

VerticalOptions="CenterAndExpand">

 <Label x:Name="playerName" Text="Name: " TextColor="White"/>

 <Entry x:Name="pName" Placeholder="First Last" BackgroundColor="White"/>

 <Label x:Name="teamName" Text="Team Name: " TextColor="White"/>

 <Entry x:Name="tName" Placeholder="Team Name" BackgroundColor="White"/>

 <Label x:Name="teamCode" Text="Team Code: " TextColor="White"/>

 <Entry x:Name="tCode" Placeholder="Team Code" BackgroundColor="White"

Keyboard="Numeric"/>

 <Label x:Name="sportType" Text="Select a sport: " TextColor="White"/>

 <Picker x:Name="SportPick" FontSize="Large" TextColor="Black"

BackgroundColor="White">

 <Picker.ItemsSource>

 <x:Array Type="{x:Type x:String}">

 <x:String>Men's Basketball</x:String>

 </x:Array>

 </Picker.ItemsSource>

 </Picker>

 <Button x:Name="PlayerRegistrationButton" Text="Enter" TextColor="Black"

BackgroundColor="White" WidthRequest="115" Clicked="PlayRegButton_Clicked"/>

56

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

 Appendix B9 – RegistrationPage.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.RegistrationPage"

 BackgroundColor="Black"

 NavigationPage.HasNavigationBar="False">

 <ContentPage.Content>

 <StackLayout x:Name="Entries" Orientation="Vertical"

VerticalOptions="CenterAndExpand" Margin="25,0,25,0">

 <Entry Placeholder="Email" BackgroundColor="White" x:Name="EmailEntry"/>

 <Entry Placeholder="Password" BackgroundColor="White"

x:Name="PasswordEntry"/>

 <Label x:Name="PlayerCoachPrompt" Text="Are you a player or a coach: "

TextColor="White"/>

 <Frame BorderColor="White">

 <StackLayout Orientation="Horizontal" VerticalOptions="CenterAndExpand">

 <Label x:Name="CoachesLabel" Text="Coach" BackgroundColor="White"

HorizontalOptions="StartAndExpand"/>

 <CheckBox x:Name="CoachesBox" Color="Red" BackgroundColor="White"

HorizontalOptions="StartAndExpand"/>

 <Label x:Name="PlayersLabel" Text="Player" BackgroundColor="White"

HorizontalOptions="EndAndExpand"/>

 <CheckBox x:Name="PlayersBox" Color="Red" BackgroundColor="White"

HorizontalOptions="EndAndExpand"/>

57

 </StackLayout>

 </Frame>

 <Button Text="Register" BackgroundColor="White" TextColor="Black"

WidthRequest="115" Clicked="RegisterClicked"/>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

 Appendix B10 – TeamWorkoutList.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.TeamWorkoutList"

 Title="Team Workouts"

 BackgroundColor="Black">

 <ContentPage.Content>

 <StackLayout>

 <ListView x:Name="TeamWorkouts" Margin="20"

ItemSelected="OnItemSelection">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Sport}" Detail="{Binding Type}"

TextColor="White" DetailColor="White"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 <Button x:Name ="addBtn" Text="Add" Clicked="AddWorkoutClicked"

BackgroundColor="White" TextColor="Black" VerticalOptions="End"/>

58

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

 Appendix B11 – WorkoutEntry.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.WorkoutEntry"

 NavigationPage.HasBackButton="False"

 Title="Workout Entry Page"

 BackgroundColor="Black">

 <ContentPage.Content>

 <StackLayout>

 <StackLayout x:Name="Contents" VerticalOptions="Center">

 <Label VerticalOptions="Center" FontAttributes="Bold" Text="Enter Workout

Type:" TextColor="White"/>

 <Picker x:Name="WorkType" VerticalOptions="Center" FontSize="Large"

TextColor="Black" BackgroundColor="White">

 <Picker.ItemsSource>

 <x:Array Type="{x:Type x:String}">

 <x:String>Sport Specific</x:String>

 <x:String>Strength Related</x:String>

 <x:String>Conditioning</x:String>

 </x:Array>

 </Picker.ItemsSource>

 </Picker>

59

 <Label VerticalOptions="Center" FontAttributes="Bold" Text="Workout

Summary:" TextColor="White" />

 <Editor x:Name="WorkSum" VerticalOptions="Center"

BackgroundColor="White" Placeholder="Brief Summary of Workout..."

HeightRequest="300" />

 <CheckBox x:Name="sendToCoach" VerticalOptions="Center"

HorizontalOptions="Start" BackgroundColor="White"/>

 </StackLayout>

 <StackLayout x:Name="EndContents" VerticalOptions="End">

 <Button Text="Save" Clicked="OnSaveClicked" TextColor="Black"

BackgroundColor="White" VerticalOptions="End"/>

 </StackLayout>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

 Appendix B12 – WorkoutList.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.WorkoutListPage"

 Title="Personal Workouts"

 BackgroundColor="Black">

 <StackLayout>

 <ListView x:Name="WorkoutList" Margin="20" ItemSelected="OnItemSelection">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Description}" Detail="{Binding CurrTime}"

TextColor="White" DetailColor="White"/>

60

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 <Button Text="Add" Clicked="AddWorkoutClicked" BackgroundColor="White"

TextColor="Black" VerticalOptions="End"/>

 </StackLayout>

</ContentPage>

 Appendix B13 – WorkoutViewPage.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.WorkoutViewPage"

 NavigationPage.HasBackButton="True"

 BackgroundColor="Black">

 <ContentPage.Content>

 <StackLayout>

 <Label x:Name="spTop" Text="Sport: " FontSize="Large" FontAttributes="Bold"

TextColor="White" TextDecorations="Underline"/>

 <Label x:Name="Sport" Text="{Binding Sport}" TextColor="White"/>

 <Label x:Name="tyTop" Text="Type: " FontSize="Large" FontAttributes="Bold"

TextColor="White" TextDecorations="Underline"/>

 <Label x:Name="Type" Text="{Binding Type}" TextColor="White"/>

 <Label x:Name="deTop" Text="Description: " FontSize="Large"

FontAttributes="Bold" TextColor="White" TextDecorations="Underline"/>

 <Label x:Name="Desc" Text="{Binding Description}"

LineBreakMode="WordWrap" TextColor="White"/>

 <Label x:Name="timCr" Text="Created: " TextColor="White" FontSize="Medium"

FontAttributes="Bold" TextDecorations="Underline"/>

61

 <Label x:Name="timeCreated" Text="{Binding TimeCreated}" TextColor="Gray"

FontSize="Small"/>

 <Button x:Name="Del" Text="Delete" BackgroundColor="White"

TextColor="Black" WidthRequest="115" Clicked="OnDeleteClicked"

VerticalOptions="End"/>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

 Appendix B14 – WorkoutViewPageP.xaml

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="WorkoutLogSP.Views.WorkoutViewPageP"

 BackgroundColor="Black"

 NavigationPage.HasBackButton="True">

 <ContentPage.Content>

 <StackLayout>

 <Label x:Name="spTop" Text="Sport: " FontSize="Large" FontAttributes="Bold"

TextColor="White" TextDecorations="Underline"/>

 <Label x:Name="Sport" Text="{Binding Sport}" TextColor="White"/>

 <Label x:Name="tyTop" Text="Type: " FontSize="Large" FontAttributes="Bold"

TextColor="White" TextDecorations="Underline"/>

 <Label x:Name="Type" Text="{Binding Type}" TextColor="White"/>

 <Label x:Name="deTop" Text="Description: " FontSize="Large"

FontAttributes="Bold" TextColor="White" TextDecorations="Underline"/>

 <Label x:Name="Desc" Text="{Binding Description}"

LineBreakMode="WordWrap" TextColor="White"/>

62

 <Label x:Name="timCr" Text="Created: " TextColor="White" FontSize="Medium"

FontAttributes="Bold" TextDecorations="Underline"/>

 <Label x:Name="timeCreated" Text="{Binding TimeCreated}" TextColor="Gray"

FontSize="Small"/>

 <Button x:Name="Del" Text="Delete" BackgroundColor="White"

TextColor="Black" WidthRequest="115" Clicked="OnDeleteClicked"

VerticalOptions="End"/>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

Appendix C – Classes
 Appendix C1 – DashboardMenu.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace WorkoutLogSP.ViewModels

{

 public class DashboardMenu

 {

 public string Title { get; set; }

 public string Icon { get; set; }

 public Type TargetType { get; set; }

 }

}

63

 Appendix C2 – FireBHelp.cs

using Firebase.Database;

using Firebase.Database.Query;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace WorkoutLogSP.ViewModels

{

 class FirebHelp

 {

 //This function here sets the connection between the application and the firebase

Database for authentication and a realtime DB

 readonly FirebaseClient firebase = new FirebaseClient("https://workoutlogsp-

1c6b4.firebaseio.com/");

 //Function to return a list of all the users from the database

 public async Task<List<Users>> GetAllUsers()

 {

 return (await firebase.Child("Users").OnceAsync<Users>()).Select(item => new

Users

64

 {

 Role = item.Object.Role,

 Email = item.Object.Email,

 Name = item.Object.Name,

 ID = item.Object.ID,

 TeamName = item.Object.TeamName,

 Sport = item.Object.Sport,

 TeamCode = item.Object.TeamCode

 }).ToList();

 }

 //This function returns a list of all the teams on the app

 public async Task<List<Team>> GetAllTeams()

 {

 return (await firebase.Child("Teams").OnceAsync<Team>()).Select(item => new

Team

 {

 TeamName = item.Object.TeamName,

 TeamCode = item.Object.TeamCode,

 CoachName = item.Object.CoachName,

 Sport = item.Object.Sport

 }).ToList();

 }

 //Function to get all the workouts sent by a coach and from a certain team

 public async Task<List<TeamWorkouts>> GetAllWorkouts(string us)

 {

65

 return (await firebase.Child("Team

Workouts").OnceAsync<TeamWorkouts>()).Select(item => new TeamWorkouts

 {

 UserComp = item.Object.UserComp,

 TimeCreated = item.Object.TimeCreated,

 Type = item.Object.Type,

 Sport = item.Object.Sport,

 Description = item.Object.Description

 }).Where(x => x.UserComp == us).ToList();

 }

 public async Task<List<Workouts>> GetPersonalWorkouts(string user)

 {

 return (await firebase.Child("Personal

Workouts").OnceAsync<Workouts>()).Select(item => new Workouts

 {

 UserComp = item.Object.UserComp,

 WorkoutCompleter = item.Object.WorkoutCompleter,

 TimeCreated = item.Object.TimeCreated,

 Type = item.Object.Type,

 Sport = item.Object.Sport,

 Description = item.Object.Description,

 SendWorkout = item.Object.SendWorkout

 }).Where(x => x.UserComp == user).ToList();

 }

 //Function to get all the players under a team roster

 public async Task<List<Users>> GetTeamRoster(string ro, string sp, string te)

66

 {

 return (await firebase.Child("Users").OnceAsync<Users>()).Select(item => new

Users

 {

 Role = item.Object.Role,

 Email = item.Object.Email,

 Name = item.Object.Name,

 ID = item.Object.ID,

 TeamName = item.Object.TeamName,

 Sport = item.Object.Sport,

 TeamCode = item.Object.TeamCode

 }).Where(x => x.Role == ro).Where(y => y.Sport == sp).Where(z => z.TeamName

== te).ToList();

 }

 //Function to get the workouts specified by the player

 public async Task<List<Workouts>> GetPlayerWorkouts(string playerName, string

sport, string sendWorkout)

 {

 return (await firebase.Child("Personal

Workouts").OnceAsync<Workouts>()).Select(item => new Workouts

 {

 UserComp = item.Object.UserComp,

 WorkoutCompleter = item.Object.WorkoutCompleter,

 TimeCreated = item.Object.TimeCreated,

 Type = item.Object.Type,

 Sport = item.Object.Sport,

 Description = item.Object.Description,

 SendWorkout = item.Object.SendWorkout

67

 }).Where(x => x.WorkoutCompleter == playerName).Where(x => x.Sport ==

sport).Where(x => x.SendWorkout == sendWorkout).ToList();

 }

 //Adds a new user to the table

 public async Task AddPlayer(string role, string email, int id, string name, string

teamName, string sport, int teamCode)

 {

 await firebase.Child("Users").PostAsync(new Users()

 {

 Role = role,

 Email = email,

 ID = id,

 Name = name,

 TeamName = teamName,

 Sport = sport,

 TeamCode = teamCode

 });

 }

 public async Task AddCoach(string role, string email, int id, string name, string

teamName, string sport, int teamCode)

 {

 await firebase.Child("Users").PostAsync(new Users()

 {

 Role = role,

 Email = email,

 ID = id,

68

 Name = name,

 TeamName = teamName,

 Sport = sport,

 TeamCode = teamCode

 });

 }

 //This function is to add a team to the database

 public async Task AddTeam(string tn, int tc, string cn, string sp)

 {

 await firebase.Child("Teams").PostAsync(new Team()

 {

 TeamName = tn,

 TeamCode = tc,

 CoachName = cn,

 Sport = sp

 });

 }

 public async Task AddWorkout(string tm, string tc, string sp, string ty, string des)

 {

 await firebase.Child("Team Workouts").PostAsync(new TeamWorkouts()

 {

 UserComp = tm,

 TimeCreated = tc,

69

 Sport = sp,

 Type = ty,

 Description = des

 });

 }

 public async Task AddPersonalWorkout(string tm, string user, string tc, string sp,

string ty, string des, string send)

 {

 await firebase.Child("Personal Workouts").PostAsync(new Workouts()

 {

 UserComp = tm,

 WorkoutCompleter = user,

 TimeCreated = tc,

 Sport = sp,

 Type = ty,

 Description = des,

 SendWorkout = send

 });

 }

 //Gets the specific user from the database

 public async Task<Users> GetUser(string em)

 {

 var allUsers = await GetAllUsers();

 await firebase.Child("Users").OnceAsync<Users>();

70

 return allUsers.Where(c => c.Email == em).FirstOrDefault();

 }

 //Tests for a user with a specific ID

 public async Task<Users> GetPlayer(String Name)

 {

 var allUserTest = await GetAllUsers();

 await firebase.Child("Users").OnceAsync<Users>();

 return allUserTest.Where(c => c.Name == Name).FirstOrDefault();

 }

 //Searches for a team using the Team Code

 public async Task<Team> GetTeam(int tc)

 {

 var allTeams = await GetAllTeams();

 await firebase.Child("Teams").OnceAsync<Team>();

 return allTeams.Where(x => x.TeamCode == tc).FirstOrDefault();

 }

 public async Task UpdateUser(int id, string email, string name, string team, string

role)

 {

 var toUpdateUser = (await firebase.Child("Users").OnceAsync<Users>()).Where(c

=> c.Object.ID == id).FirstOrDefault();

 await firebase.Child("Users").Child(toUpdateUser.Key).PutAsync(new Users()

 {

71

 Email = email,

 Name = name,

 TeamName = team,

 Role = role

 });

 }

 //Deletes a team from the system

 public async Task DeleteTeam(string tnam)

 {

 var delTeam = (await firebase.Child("Teams").OnceAsync<Team>()).Where(x =>

x.Object.TeamName == tnam).FirstOrDefault();

 await firebase.Child("Teams").Child(delTeam.Key).DeleteAsync();

 }

 //Deletes a User From the system

 public async Task DeleteUser(string em)

 {

 var delUser = (await firebase.Child("Users").OnceAsync<Users>()).Where(x =>

x.Object.Email == em).FirstOrDefault();

 await firebase.Child("Users").Child(delUser.Key).DeleteAsync();

 }

 //Deletes a workout that is being selected

 public async Task DeleteWorkout(string userComp, string timeCreated)

 {

72

 var delWorkout = (await firebase.Child("Team

Workouts").OnceAsync<TeamWorkouts>()).Where(w => w.Object.UserComp ==

userComp).Where(x => x.Object.TimeCreated == timeCreated).FirstOrDefault();

 await firebase.Child("Team Workouts").Child(delWorkout.Key).DeleteAsync();

 }

 public async Task DeletePersonalWorkout(string userComp, string timeCreated)

 {

 var delpPWorkout = (await firebase.Child("Personal

Workouts").OnceAsync<Workouts>()).Where(w => w.Object.UserComp ==

userComp).Where(x => x.Object.TimeCreated == timeCreated).FirstOrDefault();

 await firebase.Child("Personal

Workouts").Child(delpPWorkout.Key).DeleteAsync();

 }

 }

}

Appendix C3 – Team.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace WorkoutLogSP.ViewModels

{

 public class Team

 {

73

 public string TeamName { get; set; }

 public int TeamCode { get; set; }

 public string CoachName { get; set; }

 public string Sport { get; set; }

 }

}

Appendix C4 – TeamWorkouts.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace WorkoutLogSP.ViewModels

{

 public class TeamWorkouts

 {

 public string UserComp { get; set; }

 public string TimeCreated { get; set; }

 public string Sport { get; set; }

 public string Type { get; set; }

 public string Description { get; set; }

 }

}

74

Appendix C5 – UserInfo.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace WorkoutLogSP.ViewModels

{

 class UserInfo

 {

 public string Email

 {

 get => UserSettings.Email;

 set

 {

 UserSettings.Email = value;

 }

 }

 public string Name

 {

 get => UserSettings.Name;

 set

 {

 UserSettings.Name = value;

 }

 }

75

 public string ID

 {

 get => UserSettings.ID;

 set

 {

 UserSettings.ID = value;

 }

 }

 public string Role

 {

 get => UserSettings.Role;

 set => UserSettings.Role = value;

 }

 public string TeamName

 {

 get => UserSettings.TeamName;

 set

 {

 UserSettings.TeamName = value;

 }

 }

 public string TeamCode

 {

76

 get => UserSettings.TeamCode;

 set

 {

 UserSettings.TeamCode = value;

 }

 }

 }

}

Appendix C6 – Users.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace WorkoutLogSP.ViewModels

{

 public class Users

 {

 public string Role { get; set; }

 public string Email { get; set; }

 public int ID { get; set; }

 public string Name { get; set; }

 public string TeamName { get; set; }

 public string Sport { get; set; }

 public int TeamCode { get; set; }

77

 public override string ToString() => Name;

 }

}

Appendix C7 – UserSettings.cs

using Plugin.Settings;

using Plugin.Settings.Abstractions;

using System;

using System.Collections.Generic;

using System.Text;

namespace WorkoutLogSP.ViewModels

{

 public static class UserSettings

 {

 static ISettings AppSettings

 {

 get {

 return CrossSettings.Current;

 }

 }

 public static string Email

 {

78

 get => AppSettings.GetValueOrDefault(nameof(Email), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(Email), value);

 }

 public static string ID

 {

 get => AppSettings.GetValueOrDefault(nameof(ID), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(ID), value);

 }

 public static string Role

 {

 get => AppSettings.GetValueOrDefault(nameof(Role), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(Role), value);

 }

 public static string Name

 {

 get => AppSettings.GetValueOrDefault(nameof(Name), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(Name), value);

 }

 public static string Sport

 {

 get => AppSettings.GetValueOrDefault(nameof(Sport), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(Sport), value);

 }

79

 public static string TeamName

 {

 get => AppSettings.GetValueOrDefault(nameof(TeamName), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(TeamName), value);

 }

 public static string TeamCode

 {

 get => AppSettings.GetValueOrDefault(nameof(TeamCode), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(TeamCode), value);

 }

 public static void ClearAllData()

 {

 AppSettings.Clear();

 }

 }

}

Appendix C8 – Workouts.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace WorkoutLogSP.ViewModels

80

{

 public class Workouts

 {

 public string UserComp { get; set; }

 public string WorkoutCompleter { get; set; }

 public string TimeCreated { get; set; }

 public string Sport { get; set; }

 public string Type { get; set; }

 public string Description { get; set; }

 public string SendWorkout { get; set; }

 }

}

		Dale Hamilton <dhamilton@nnu.edu>
	2021-04-29T20:36:44+0000
	Dale Hamilton: 43°35′33″N 116°42′11″W (30.0 m)
	DocHub LLC e656ac36e9a6fc4e4891622c71623ba499e3a1a1
	Certify the signature of Dale Hamilton <dhamilton@nnu.edu>

