
NORTHWEST NAZARENE UNIVERSITY

Creation of MakerSat Flight Code

THESIS

Submitted to the Department of Mathematics and Computer Science

In partial fulfillment of the requirements

for the degree of

BACHELOR OF ARTS

Aaron Ewing

2017

iii

Abstract

MakerSat Flight Code Creation.

EWING, AARON (Department of Mathematics & Computer Science). MYERS, DR.

BARRY (Department of Mathematics & Computer Science).

MakerSat is a nanosatellite, commonly referred to as a CubeSat, that will launch into

Earth’s orbit in 2017 on one of NASA’s (National Aeronautics and Space Administration)

ELaNa (Educational Launch of Nanosatellites) rockets. This launch will likely represent Idaho’s

very first satellite to go into outer space. MakerSat is a university research project to test what

kinds of 3D printed plastic polymers can survive the harsh conditions of outer space over a long

period of time without corrosion. The desired outcome of this project is to one day be able to 3D

print satellites on the ISS (International Space Station) for quick, easy, and cheap development

and deployment. The construction of MakerSat required multiple students to develop code on

multiple different microcontrollers for MakerSat to reliably collect project data and send it back

to Earth for processing. The responsibilities of the student code developers included running

multiple project experiments, sending raw information to the “Hub” microcontroller, sending

packetized data to the radio, proper life cycling (due to low power requirements), and processing

collected experiment data on Earth to provide useful scientific information concerning the

research project.

iv

Acknowledgments

I would like to thank everyone who worked with me on the research project which became my

senior project. Dr. Steve Parke, Dr. Joshua Griffin, Braden Grim, Mitchel Kamstra, and Connor

Nogales. They made the project fun and interesting to work on, and more than anything they put

everything they had into this project. Without their strength and dedication, this project would

not have succeeded. I also wish to thank everyone at NearSpace Launch (NSL), who helped turn

our project idea into reality. I also want to thank the several Caldwell High school students who

wanted to be a part of our project, and their engineering teacher Dennis Zattiero. They all worked

really hard to create their science project for outer space, and they succeeded. I, of course, would

like to thank my friends and family, who encouraged me on a daily basis to get this amazing

project done. They understood when I could not be with them, and their constant support was the

only thing that allowed me to keep my sanity at times. Without everyone I have mentioned so

far, this project would not have succeeded.

v

Table of Contents

Title Page

Thesis

Abstract ... iii

Acknowledgments .. iv

Background ... 1

Initial Project Concept and Progression. .. 2

Project Evolution .. 5

Required Tasks and Challenges... 6

Implementation ... 12

Coding SPI module: .. 13

Coding UART module: ... 16

Coding Packetizer module: .. 17

Coding Packet Analyzer: .. 19

Miscellaneous Code: ... 25

Future Work .. 26

Conclusion ... 27

Citation: ... 27

Glossary ... 28

Appendix A – Source Code .. 32

vi

Figure 1: MakerSat CAD .. 4

Figure 2: MakerSat CAD Exploded View .. 4

Figure 3: Finite State Machine Diagram ... 8

Figure 4: MSP430FR6989 .. 13

Figure 5: Init_SPI Case 0 .. 14

Figure 6: SPI_Init clock .. 14

Figure 7: write_SPI ... 15

Figure 8: read_SPI .. 16

Figure 9: UART BAUD .. 17

Figure 10: Packetizer .. 18

Figure 11: Packetizer return .. 19

Figure 12: Polymer Period Input ... 20

Figure 13: Polymer Waveform Input .. 21

Figure 14: Polymer Period Output .. 21

Figure 15: Polymer Waveform Input .. 22

Figure 16: Packet Analyzer - reading in file ... 23

Figure 17: Packet Analyzer - sortPackets function ... 24

Figure 18: Packet Analyzer – function output .. 25

Figure 19: Example Finite State Diagram ... 29

1

Background

A CubeSat is a type of miniaturized satellite that is deployable into outer space, often for

the purpose of research. These small satellites are considered U-class, meaning that a 1U

CubeSat is a 10cm cube weighing approximately 1.3 kg or less. CubeSats started being

developed in 1999 and has grown increasingly popular ever since then.

NNU has two MakerSat missions currently planned, MakerSat-0 and MakerSat-1.

MakerSat-1’s goal is to take the next step in the rapid development of microsatellites and

demonstrate how they could one day be printed and assembled on the International Space Station

(ISS). The ISS has recently obtained a 3D printer[3D Printer] that will work in a micro-G

environment. MakerSat-1 will have rails on four of its edges to hold the CubeSat together (see

Figures 1 and 2) 3D printed and then assembled on the ISS. The goal of the rails is to show that a

nanosatellite can survive the environment of space and could be printed on the ISS. Once

released the CubeSat will be in a similar orbit to the ISS, a 330-435 km altitude, where it will

hopefully perform the experiments it was sent up to do and then burn up on re-entry up to 10

years from when it started.

 MakerSat-1 main experiment involves two parts: a CMOS[CMOS] imager and the ability to

measure the degradation of ULTEM polymers. The purpose of the CMOS imagers is to take

images of Earth while the purpose of the polymer experiment is to measure with

cantilevers[cantilever] a 3D printed test mass, the same type of polymers that 3D printed satellites

would eventually be made out of.

MakerSat-0 would be the preliminary mission to test the MakerSat idea in a more

traditional manor. MakerSat-0 is an NNU research project with six team members (Dr. Parke, Dr.

2

Griffin, Mitch Kamstra, Braden Grim, Connor Nogales, and Aaron Ewing), with the duty of

creating a single 1U-class CubeSat. The satellite will likely be Idaho’s very first CubeSat to be in

space. MakerSat-0 would be launched with NASA’s ELaNA rocket with a traditional solid metal

frame with all components in a vertical stack inside.

MakerSat-0’s experiment involved two parts: a radiation counter board constructed by

Caldwell High School (CHS) and a polymer degradation board created by Connor Nogales. The

CHS board would have a sensor that would count radiation particle hits over a certain window of

time (measured in seconds), while Connor Nogales’s board would measure the degradation of

polymers using cantilevers. To measure the polymer degradation using cantilevers the board

must be oscillating at its natural frequency of approximately 75 Hz with a surface

transducer[surface transducer], keeping it in a stable oscillating state. At the end of the cantilevers there

is a known sample size of 3D printed mass and as the mass of the plastic erodes away from the

harsh conditions of space (including free oxygen radicals) the oscillation of the cantilevers will

change noticeably. This oscillation will present itself as an easy to read voltage change.

Initial Project Concept and Progression.

The MakerSat project existed long before Aaron Ewing joined the team, and will

continue to exist for a long time. The original members of the team were Dr. Parke and Dr.

Griffin as the advisers. Mitch Kamstra, Braden Grim, and Keith Moilanen were the initial

student researchers. Kamstra and Grim stayed with the project while Keith Moilanen ended up

graduating and moved on. The goal of the project was to always create a 3D-printed CubeSat

into outer space. The name, design, and overall function varied a fair bit until around the time

Connor Nogales and Aaron Ewing joined the project.

3

Connor Nogales and Aaron Ewing began work on MakerSat in late 2015 on the science

payloads, which later became known as science boards or experiment boards. There was room

for four unique experiments on the science boards since the CubeSat took the form of a cube,

which has six sides, and two of the sides were used for implementing the radio and Hub boards.

Figure 1 and 2 show the preliminary CAD drawings of MakerSat, created by Braden Grim.

Once brought on, the newly hired researchers went to work on finding interesting science

experiments. The team settled on a camera and a way to measure the polymer degradation that

space would have on the 3D printed CubeSat. The rest of that calendar year was spent

developing a way to measure polymer loss and finding a camera that would fit the project needs.

Sensors that would measure vaporized gas were considered; since 3D printed polymer has

trapped air inside, and being placed in a vacuum would release those gasses, was soon discarded

because most sensors were too big, expensive, and/or required an atmosphere to function.

4

Figure 1: MakerSat CAD

Figure 2: MakerSat CAD Exploded View

5

Eventually, it was determined that the polymer degradation was to be measured using a

sample 3D printed polymer mass at the end of a cantilever, which was forced to vibrate at the

natural frequency of a small rotating motor. The camera was proving difficult to solve, due to the

quality of cameras that size for a reasonable price and the challenge of getting a decent image

from that camera, through an embedded microcontroller, through a radio link back to Earth.

Towards the end of the Spring 2016 semester, Aaron was mainly working on the camera

development and Connor was working toward a functioning cantilever.

At this stage of the project, this research project became Aaron’s senior project for the

partial fulfillment of the requirements for the degree of bachelor of arts in Computer Science.

The entire summer had work, specifically working with the communication pathways between

all the components of MakerSat, trying to figure out the camera issue, and honing the skills in

embedded programming and finite state machine design, since Aaron Ewing was largely

unfamiliar with these when he started on the project. The project was ultimately altered

significantly due to an earlier launch opportunity that the team accepted in early August, 2016.

Project Evolution

The focus of the project changed dramatically when the MakerSat research group was

offered a position on a launch in mid-2017, instead of mid-late 2018. Considering that a delayed

launch was likely, even up to 2019, the MakerSat research group decided that the best approach

was to take the offer for the mid-2017 launch.

The problem that presented itself when the MakerSat team made its choice was the

accelerated timeframe. For the launch to take place in mid-2017, the team needed to have the

6

entire CubeSat completed, tested, and ready to launch in early November of 2016. Considering

that the project now had to be functional within a 3-4-month time frame instead of a 15-month

time frame, radical changes were made. Work on the camera ceased, Caldwell High had the

choice of keeping up with the mission or be left behind, and everyone adopted an “all hands on

deck” mindset. Every member of the team worked an excessive number of hours, making it their

life goal to see this project through to the end, and eventually the project finished. At the present

time (April, 2017), MakerSat is ready for launch.

Required Tasks and Challenges

With a little over three months to develop the basic working code, the required tasks of the

project were re-evaluated. The goals of the project are thus:

1. Pass the NASA criteria for going into space.

2. Successively send MakerSat into space.

3. MakerSat successfully turns on and communicates with Earth.

4. Transmit packets of science data (science board payload data) to Earth.

5. Successfully decode that raw science packet of data and turn it into useful information.

6. Repeat steps 4 and 5 until the satellite’s eventual re-entry into the atmosphere.

NASA’s criteria are rather simple: it must not interfere with any other rocket payload in any

way, it must survive the launch, and it must not emit any radio signals for more than 45 minutes

after deployment (similar situation as to when an airline asks someone to turn off their phones

and laptops before they lift off or land an airplane). Aaron Ewing was not involved in this part of

the project, instead, it was largely the duties of NearSpace Launch and Braden Grim. NearSpace

7

Launch controlled the radio and Braden Grim testing the physical structure of MakerSat (since

Grim was the sole Mechanical Engineering student of the group).

A successful launch was the responsibility of the those launching the rocket into outer space and

our Lord and savior to oversee it.

The initial communication with Earth is initialized when power is transferred to

NearSpace Launch’s radio. Thankfully, NSL has had a rather successful career making CubeSat

simplex and duplex radios for other interested parties. The phrase simplex and duplex just mean

that the radio is one way (output) only or two ways (input and output), respectfully.

Aaron Ewing was mainly involved with the goals listed in steps 4 and 5, as mentioned above.

Goal 4 was the most important and involved the most risk. The entire finite state machine

had to work properly. Figure 3 below shows the finite state machine of MakerSat.

8

Figure 3: Finite State Machine Diagram

9

 The order of execution of the state machine is as such:

1) The onboard solar panels charge the battery to the point it can turn on the On-Board-

Computer[OBC]. Once the batteries reach an acceptable level, MakerSat will wait 45

minutes to accommodate NASA regulations, regardless if this is the first time or the nth

time restarting. One of the OBC’s primary tasks is to manage the current voltage levels

from the 5 solar panels (there is no solar panel on one of the boards because the radio

takes space on that board). If the voltage drops below a certain point, the OBC will turn

off MakerSat to preserve the battery and attempt to charge the battery back up to an

acceptable level. The OBC will attempt to keep itself on and to transmit a single health

packet a day (24-hour period, regardless of orbit) as much as possible. Doing so lets the

team on Earth know that the satellite has low power, but is still operational while also

saving the CubeSat from restarting the OBC without a guarantee of it turning back on.

2) Once the OBC turns on and is in a situation where there is enough power to do science

experiments, it will turn on the Hub. The Hub is the microcontroller board that connects

the Science Boards to the Radio (please refer to Figure 2 again for visual example). The

Hub’s job is to send a request to the EPS to provide power for a science board, read in

the science board’s experiment data, save it, request science board power to be turned

off, and then send data to the radio for transmission to Earth. Once the Hub does this for

all of the science boards, it will request for the OBC to turn the Hub itself off (as to save

power). The Hub communication is largely where Aaron Ewing helped with the

MakerSat project.

3) When the Hub requests power from the EPS to turn on a particular science board, the

science board will turn on and immediately go about its science task (which is either

10

Connor Nogales’s or Caldwell High’s experiment). Once done, it will send a ready signal

to the Hub, and the Hub will respond in turn, and then it will send this data to the HUB

using the SPI[SPI] communication protocol. Once done sending information to the Hub

board the science board drops the ready signal to 0 volts, the Hub will turn it off as to

restart it in the next orbit (if there is enough power that is). The majority of the work done

on the science boards was done by Connor Nogales and CHS team. Aaron Ewing assisted

with the CHS team, but they did the brunt of the work and deserve all of the credit for the

completion of the code. Their board revolved around a radiation counter purchased from

NSL, which could measure the radiation strikes on its sensor within a given amount of

time (a fraction of a second in this case) for particles per second. Description of the

Polymer board is mentioned in the background section of this paper.

4) When the Hub board has the data from a science board it will transform it into a series of

bytes, known as a packet, that the radio will understand. This involves prefixing a series

of bytes to the front (0x50, 0x50, 0x50, 0x0C) to tell the radio that the Hub wishes to

communicate and that it wants to transmit a packet to Earth. The Hub will then send a

packet of 39 bytes (3 0x50 bytes to turn on radio, 0x0C byte to declare the intention of

sending a packet, and 35 bytes of actual data) to the radio using the UART protocol

(Universal Asynchronous Receiver/Transmitter). The hub will wait for the radio to send

out the information, and when the ready line goes low (indicating that the radio can

receive another packet) it will transmit the packet. Once all the desired packets are

transmitted out of the radio, the Hub will delete all of its saved contents and go to the

next science board. If every science board has gone through this process it will then

request a power off by the OBC. As mentioned before, Aaron Ewing and Mitch Kamstra

11

did a large part of Hub code. Kamstra developed the circuit board and a large portion of

the task scheduler of the Hub while Aaron Ewing did a smaller portion of the task

scheduler and most of the communication protocols, packetizing, and other pieces of the

Hub code. Both Mitch Kamstra and Aaron Ewing were heavily involved in the actual

interfacing between Hub and Science Board.

5) When the radio receives a packet, it will transmit it to the GlobalStar network, a network

of satellites in orbit used for satellite phones and low-speed communications that NSL

uses, using a simplex radio that NSL developed. The GlobalStar Network then gathers all

of the packets and transmits that information to Earth. It is important to note that the

Global Star network will not receive everything that the radio transmits to it. Corruption,

dropping, or losing packets often happen during communication. Precautions were taken

to make sure that what data reaches Earth makes sense to the MakerSat research team,

which is discussed in stage six.

6) The very last stage in the process is to convert the downloaded data into readable

information. This process is the least stressful since fixing a problem is relatively simple

on Earth, where problems in the other steps mentioned above cannot be fixed once the

satellite is in orbit. A Matlab program was written so that the CSV (Comma Separated

Values) files which are The Matlab code was originally being written by Aaron Ewing,

but Dr. Griffin did the most work due to the rapidly approaching deadline and the fact

that Dr. Griffin was more accustomed to Matlab programming than Aaron Ewing. Aaron

Ewing started developing the code and did the end testing and alterations, but Dr. Griffin

did the majority of the coding in the middle so that the project could be more rapidly

produced.

12

Implementation
The code in Appendix A is either written in Embedded C using the Code Composer

IDE[IDE] or in Matlab. The large distinction, that will become more clear as time progresses, is

that Embedded code is designed for a certain type of microcontroller. It interfaces directly with

the hardware, which changes between all computing systems. This means that the code will be at

least slightly different for every type of microcontroller, no matter if the code is produced for the

same microcontroller family from the same company. The particular microcontroller used was

the MSP430FR6989 from Texas Instruments, where the MSP430 is the class of the Mixed Signal

Processor (MSP) by Texas Instruments (TI), the FR stands for Ferroelectric memory (explained

later), and 6989 is a specific model of MSP430. The code written in Appendix A may not be

completely written by Aaron Ewing, but was where Aaron Ewing was involved. This includes

the Matlab code and the Linker File[Linker] where changes had to be made for memory save

locations. Figure 4 below shows a TI MSP430FR6989 Launchpad, where the majority of the

programming on this project took place. The pins below are I/O ports, where GND is Ground,

3.3V and 5V are 3.3 and 5 Volt pins respectfully, and other pins denoted as Port.Pin; meaning

that P2.1 would denote the Port 2 Pin 1. The black chip in the center is the microcontroller,

everything else is an I/O interface to interact with and use the microcontroller.

13

Figure 4: MSP430FR6989

Coding SPI module:

Four separate functions exist in the SPI module: initialize SPI communication (init_SPI),

write 1-byte using SPI (write_uint8_SPI), 2-byte write SPI (write_uint16_SPI), and read_SPI.

Please refer to Appendix A SPI_Polling for source code.

init_SPI:

 The code for init_SPI was made so that multiple different microcontrollers could use it. 3

cases existed for three types of boards: Hub board (which was a board specifically designed

using the MSP430FR6989 microcontroller), the Caldwell High School team (which used a

Launchpad for the MSP430FR5969 provided by Texas Instruments that did not have to be

uniquely designed for MakerSat), and Connor Nogales’s experiment, which used SPI

communication itself to communicate with the motors used to vibrate the board. The example

here will focus on the Hub case (case 0), though it is very similar to the other cases.

14

Figure 5: Init_SPI Case 0

The above code is heavily integrated with the specific microcontroller. Lines 23 and 24

set pins 4, 5, and 7 to the primary function in port 1. The primary function denoted in the 824-

page userguide[1] is the state in which SPI communication can take place. The 176-page

datasheet[2] denotes which pins connect to which SPI module (there are multiple different SPI

channels in the event that multiple different devices need to communicate with the

microcontroller). “|=” ORs bits together, while “&= ~()” does the opposite. ORing bits together

will result in a1 if any of the bits (two or more) are 1, while the opposite results in a 0 if any of

the bits are 0.

Lines 28-33 set up the other lines needed to communicate with SPI, where DIR sets the direction

of the I/O ports (1 as output and 0 as input), and OUT as an output.

Figure 6: SPI_Init clock

15

The last part of the code places the microcontroller into a state where adjusting the internal clock

is possible, starting the SPI module inside of the microcontroller, setting that SPI clock to 1MHz,

and then putting the MSP back into a useful state again.

Write_uintX_SPI

Figure 7: write_SPI

Both the 8 and 16-bit writing SPI is the same, except that in the 16-bit version lines 137

and 138 are both included, where it is not in the 8-bit version. This function has two input

parameters, a variable that holds the data to be sent through the SPI, and the device identifier (so

that the SYNC pins are correct). The program first checks to see that there is no data coming

through the SPI line (line 130), and then it pulls the SYNC line low (135). The SYNC line lets

the other device know that the first device wishes to write to it. The function will then wait for

the other device to be ready to receive (136). In the 16-bit version of the function, it will perform

a bit shift and send the first byte out (lines 137 and 138). In the 8-bit version of the function, it

will not perform a bit shift. The function will then send out the byte (if it is a 16 bit, the missing

first byte will trigger the overflow flag, but this is the intended result). The function will then

make sure that it was sent and the line is no longer busy (line 140), where it will pull the SYNC

line high (line 141), generating the done signal, and leave the function.

16

Read_SPI

Figure 8: read_SPI

Read_SPI is unique because only the Hub uses it. SPI operatives using a Master-Slave

relationship, where the Master (Hub) tells the slave (science boards) what to do. What happens

then is that the Hub will write a byte to the slave, and every time that happens the Hub will

receive a byte as well.

SPI is a shift register, where the receive register is linked to the write register to the other

device. Essentially, when the device writes to another it will displace the 8 bits into the other

device, and the 8 bits that were in the other device are sent down the other line to the sending

device; they trade each other information.

When the Hub transmits the byte on the TX (Transmit) line (line 180), it will receive a

byte on the RX (Receive) line. After the Hub checks that it received the information (lines 181

and 182), it will save the variable, wait for 100 clock cycles (line 184) (100 clock cycles at

1MHz is roughly a 0.0001-second delay) to have the communication lines settle to desired

values, and then returns the value (line 185).

Coding UART module:

The UART module (Universal Asynchronous Receiver/Transmitter) has code that is very similar

to the SPI module, even if the protocols are different. the most significant difference is that the

17

code developer has to set a BAUD[BAUD] rate manually. Note that UART is often used for USB

drive communication.

Figure 9: UART BAUD

The code in Figure 9 sets the BAUD rate to 38,400 bits per a second. It selects the 1MHz

clock (line 72) and then subdivides it to 38400 using a 0x1A divisor. While this does not exactly

equal 38,400 bits per a second (38,383.4 bits per a second instead), the MCTLW register

modules the clock frequency so that on average it is equal to 38,400 bits. The other parts of the

module are in Appendix A below, but the code is very similar to the SPI module.

Coding Packetizer module:

The packetizer function exists because the EyeStar radio requires information in a

specific manner. The first 4 bytes must be 0x50 0x50 0x50 0x0C. This information turns on the

OBC, letting it know to power on (0x50 0x50 0x50), and the 0x0C says that there is information

to be sent out the radio. If the last byte was 0x0B, the command would notify the EPS (Electrical

Power System) to turn on or off a science board. The next 35 bytes contains the data to be sent

out of the radio. The number of bytes sent out is always constant, so if fewer than 35 bytes ought

to be sent, padding bytes must be added. There was a decision made to have the next 2 bytes to

18

represent the data source (there are multiple different experiments) and the packet number.

Please see Figure 10 for visual aid.

Figure 10: Packetizer

The Source_ID in Figure 10 contains the data source (CHS experiment, polymer experiment, or

IMU[IMU]). There is also a global variable (g_variable) that counts out how many packets have

been sent. To conserve data being transmitted (due to the high financial cost of receiving

information, around 10 - 20 cents per a byte), 3 bits represent the source, and 13 bits are used for

the packet number. The packet number allows the team to identify any packets that were lost in

transmission. 13 bits provide a sufficient number to account for any lost packets under any

circumstance ((11111111111112) = (819110)). If 5 bits are used (111112) = (3110)), then only 32

packets could be sent without an overflow, versus 8192 packets. The source_ID replaces the 3

most significant bits of the packet counter, combining the 2 values into a useful variable that will

work for the project and is more conservative than the 24 bits that would be used if no

conversion took place (lines 36 – 42). Once those 6 bytes are in the array (0x50 0x50 0x50 0x0C

19

plus 2 bytes), the data collected from the experiments are placed into the new array (line 47 –

50). An experiment can generate multiple packets worth of data, so it is likely for this function to

loop multiple times, which increases the probability that there will be a need to pad the packet

with “empty data.” Lines 52 – 55 are in charge of this.

This function took a while to implement in code. The decision on the size and contents of

the first 6 bytes was in fluctuation for weeks. There was also a false start in the returning of the

data out of the function. Figure 11 describes the final return result. Originally, a pointer was

implemented so that there was no need to access the module to get every single byte of

information to send out through the radio. The IDE[IDE] threw no errors, and it ran through

without a problem, except the data at the pointer was corrupt somehow during transmission and

neither the value it was meant to be or the value that an empty space represents (0x00). The

approach in Figure 11 is currently used, since accessing the module repeatedly is a non-issue.

Figure 11: Packetizer return

Coding Packet Analyzer:

 The data collected needs to be parsed in order for it to be useful information, and doing it

manually was not practical, so a Matlab script was made for that purpose. The Matlab program

20

would read in CSV (Comma Separated Values) files that contain hundreds of lines that look

similar to the following line:

0-788285,10/27/2016 8:24,465208,"""A10C40004BE9080080C54A4C4AB74B4E9600

000000000000004E5BEB45034D65495FC800""","""A1""",A1,"""A10C40004BE90800

80C54A4C4AB74B4E9600000000000000004E5BEB45034D65495FC800""",A10C400

04BE9080080C54A4C4AB74B4E9600000000000000004E5BEB45034D65495FC800

Figures 12 and 13 are a visual representation of same data placed into the program. The data was

not gathered from the satellite but created to test the program. Figure 12 was supposed to show

an increasing line when comparing frequency to same rates, and Figure 13 was supposed to the

complete sinusoidal waves that a cantilever might produce on the actual mission. Figures 12 and

13 displayed the expected graphs, showing that the Matlab program worked with the test data.

Figure 12: Polymer Period Input

21

Figure 13: Polymer Waveform Input

Figures 14 and 15 display a test of the Matlab code with actual cantilever data from the satellite.

Figure 14: Polymer Period Output

22

Figure 15: Polymer Waveform Input

Figures 14 and 15 accurately displayed the information from the Matlab cantilever test. It

is important to note the polyer experiments were not conducted in orbit, but in the satellite lab, so

the test data is expected to be skewed due to the different environments. Figure 14 shows spikes

of a frequency higher than expected but drops quickly down to expected frequency ranges.

Figure 15 shows the complete waveform sent from the polymer board. Zero amplitude represents

missing packets, which the team wished to make obvious for testing purposes. When information

is collected once the mission starts, missing packets can be represented by a straight line so that

those segments could more accurately represent the missing data.

The Matlab code is shown in Figures 16 through 18, which convert the CSV files from

the NSL server into useful information. Figure 16 shows the code that creates struts and fields to

hold data (lines 5 – 15), takes in the CSV file (line 18), separate the values (line 20), close the

23

file (line 21), and then separate all of the values into list of metadata (data about the data, such

data timestamp) and data for the entire CSV file in a for loop (lines 25 – 30).

Figure 16: Packet Analyzer - reading in file

The program then calls a function to sort out the packet into the various different types of

data (POLY stands for polymer experiment and RAD stands for the CHS experiment). The

program finds the header that represents each (lines 4 and 16 in Figure 17) and has to do a couple

24

of conversions between hexadecimal (base 16) and decimal (base 10) to get it into a readable

format.

Figure 17: Packet Analyzer - sortPackets function

 The code that is shown in Figure 18 plots the data that has been separated into all of the

different types and adds proper labels. The program ends with these lines and the desired data

from the CSV files are outputted to the screen. This is a good time to mention again that Aaron

Ewing did not write the majority of this code, Dr. Griffin did. Please see stage 6 in the Required

Tasks and Challenges section of this thesis for further explanation.

25

Figure 18: Packet Analyzer – function output

Miscellaneous Code:

 The only other significant thing not mentioned so far was learning what a linker file does

and editing it. The MSP430FR6989 has split its memory addresses into normal DRAM and

FRAM. FRAM stands for Ferroelectric Random Access Memory. Ferroelectric is different than a

standard dielectric memory in the fact that it is non-volatile due to using a ferroelectric film as a

capacitor instead of the dielectric film in DRAM. This means that it is more resistant to changes

in the environment, specifically in regards to radiation because FRAM cannot be easily affected

26

by magnetic or electric fields (Instruments, 2008). In this situation, it is more resistant to

radiation damage that could corrupt memory in orbit. Alternatively, if the technology is older,

made of less efficient but more resilient materials, it can be safe as well. However, smaller

physical space, faster processing power, and other traits of new technology were needed, so

FRAM was used.

bss : {} > FRAM /* Global & static vars */

 .data : {} > FRAM /* Global & static vars */

 .TI.noinit : {} > FRAM /* For #pragma noinit */

 .stack : {} > RAM (HIGH) /* Software system stack */

 .tinyram : {} > TINYRAM /* Tiny RAM */

In the above code, .bss (Basic Service Set), .data, and .TI.noinit are inside of FRAM

(typically these are inside of RAM). .bb holds all uninstantiated variables (variables without a

value), .data as where data is held, .TI.noinit holds not initialized variables. This protects all the

information in the satellite from being corrupted from radiation strikes. An attempt at placing the

stack in FRAM was pursued, was eventually abandoned due to runtime errors.

Future Work

There are a few things that would be a good idea for future work.

1) Correct IMU Error: The IMU stopped working at the last second during final CubeSat

integration. The exact reason is unknown, but fixing the bug in the next one so collecting

IMU data is possible would be wonderful.

2) Place stack in FRAM: To be able to put the stack inside of FRAM. It was not possible to

get it to work before the deadline, but if the stack was in FRAM then there would be no

weak link for possible radiation strikes against the microcontroller.

27

3) Auto-Error Correction: Have some sort of error correction software. Since the updating

or viewing the software is not possible after launch. Using an algorithm that could at least

make data collection resistant to bug errors could be useful is preserving valuable data

from the satellite. This is currently being pursued by Aaron Ewing for part of his

Engineering Senior Project.

Conclusion

 This project was very character building for me. While I was not able to get into more

elegant coding practices, it was fun to be able to work so close to the hardware (for example,

most computer scientists do not worry about what kind of RAM they are using) and learning

embedded systems. I wish I could have done more, but it was important for me to learn how to

work efficiently with a team and how to cope with drastic scheduling changes, something that

will happen again in my future career.

Citation:

MSP430FR6989. (2017, March). Retrieved from Texas Instruments:

http://www.ti.com/product/MSP430FR6989/technicaldocuments

MSP430FR6989. (2017, March). Retrieved from Texas Instruments:

http://www.ti.com/product/MSP430FR6989/datasheet

Instruments, A. O. (2008). FRAM FAQ. Retrieved from http://www.ti.com/pub/fram/fram_faq.html

28

Glossary

3D Printer: A device that is able to “print” a 3D object by creating multiple thin layers of some

substance (often times the substance is some sort of plastic polymer). It is usually referred to as

additive manufacturing in the industry, as it will slowly add material rather than remove material

to make an object.

BAUD: symbols or pulses per a second is the proper definition. However, it can be loosely

defined as bits per a second.

CAD: Computer-Aided Design. Allows for the construction of an object(s) in a virtual computer

environment. Often used to create 3D printed objects.

Cantilever: Cantilevers used in this project are small flexible components in the shape of a

diving board, where the flexible strip portion has the property of creating an increasingly larger

voltage the further it is bent, known as a piezoelectric response. If there is no pressure on the

flexible portion of the cantilever, there will be a zero voltage, if there is some pressure that

causes it to bend, it will create some voltage level proportional to that particular cantilever.

CMOS: Complementary Metal-Oxide-Semiconductor sensors convert light into electric signals.

Millions of rows of photodiodes create an image which is constructed using CMOS technology.

CMOS sensors are often used in most modern digital cameras.

Embedded System: A computer system with a dedicated task that is embedded inside of a larger

electrical or mechanical project.

EPS: Electrical Power System. The EPS controls which satellite subsystem is connected to the

battery. It is a part of the OBC (On-Board-Computer, see OBC in Glossary), on the satellite.

29

Finite State Machine: A system that can be fully represented with a finite number of states,

where the next state depends on the current state and the current input(s). For example, a system

could have three states (State A, B, and C) and depend on a single input, and have a single

output. Perhaps this system represents a light hooked up to a timer. State A could represent no

input on the button, and will not light up the light. When pushing the button, however, the

system will transition to State B. The system will stay in State B for as long as the button is held,

and in State B the light is lit up. When releasing the button, it will transition to State C. In State

C, the light will remain on, but will initialize a timer to count up to ten seconds. For those ten

seconds, the light will remain on (due to it being in State C). If pushing the button happens

within those ten seconds, the system will go back to State B, but if the button is not active within

ten seconds it will return to state A. Refer to Finite State Diagram for a visual example.

Figure 19: Example Finite State Diagram

Figure 18 shows multiple states (the bubbles) that have a name and a status, while an action can

be made that will transition the current state to another one (this is represented by arrows

30

pointing from one state to another). Refer to Finite State Machine example for an explanation on

the diagram.

IDE: Integrated Design Environment is the software tool often used to write and test software.

Such software usually contains a code editor, compiler or interpreter, and a debugger. Texas

Instrument’s Code Composer was the main IDE for this project.

IMU: Inertial Measurement Unit. This particular IMU has 9 axes, 3 axes for acceleration, 3 axes

for angular rotation, and 3 axes for the magnetometer. The magnetometer measures the magnetic

field strength in each of the axes (X, Y, and Z).

IDE: Integrated Development Environment is an environment in which code is written and

compiled for a specific hardware platform.

Linker File: A linker is a computer program that takes one or more object files generated when

executing the program and combines them into a single file. It is an important step in turning

code written in an IDE and turning it into something that can be executed.

Microcontroller: A microcontroller is a single integrated processor, with memory (both primary

memory such as RAM for temporary use and secondary memory such as solid state for long term

storage), and input-output (I/O) pins to interface with.

OBC: Stands for On-Board-Computer. It is the part of the satellite that was made by NearSpace

Launch and contains the EPS (Electrical Power System, see EPS in Glossary), and the Radio.

SPI: Serial Peripheral Interface is a common communication protocol used within embedded

systems. It is very good for transferring information quickly between two or more devices. A

downside to SPI is the need to have several distinct communication lines.

31

Surface Transducer: Essentially a speaker that operates with physical contact. The surface

transducer will use a solid medium to transmit vibrations through instead of air like most

speakers.

Task Scheduler: A very simplistic operating system that orders the embedded systems tasks as

needed, making sure that the execution of tasks will not interfere with the execution of other

tasks.

UART: Universal Asynchronous Receiver/Transmitter communication is another

communication protocol used on the satellite. It only requires two communication lines, but can

only be used between two devices, requires calculation of BAUD rate, and is slower in

communication.

32

Appendix A – Source Code

Packetizer:

Packetizer.h

/*

 * Packetizer.h

 *

 * Created on: Sep 1, 2016

 * Author: AaronEwing

 */

#ifndef PACKETIZER_H_

#define PACKETIZER_H_

void init_Buffers(void);

void Packetizer(uint16_t source_ID, uint8_t bytes_Read);

void write_To_Packetizer(uint8_t packet_Data, uint8_t SB_Select);

#endif /* PACKETIZER_H_ */

Packetizer.c

/*

 * Packetizer.c

 *

 * Created on: Sep 1, 2016

 * Author: AaronEwing

 */

#include <stdint.h>

#include <stdbool.h>

#include "Circular_Buffer.h"

uint16_t g_POLY_Exp_Count = 0;

uint16_t g_RAD_Exp_Count = 0;

uint16_t g_IMU_Exp_Count = 0;

uint16_t g_source_ID_Exp_Count = 0x0000;

uint8_t POLY_Bytes[39] = { 0x50, 0x50, 0x50, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

uint8_t IMU_Bytes[39] = { 0x50, 0x50, 0x50, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

uint8_t RAD_Bytes[39] = { 0x50, 0x50, 0x50, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

33

void Packetizer(uint16_t source_ID, uint8_t bytes_Read) {

 uint8_t ii = 6;

 switch (source_ID) {

 case 0:

 // IMU

 default:

 source_ID <<= 14;

 // shift ID 14 bits to the left & fill the 14 bits with 1's

 g_source_ID_Exp_Count = source_ID | g_IMU_Exp_Count; // give source_ID_Exp_Count

appropriate value

 if (g_IMU_Exp_Count >= 0x3FFF) { //

increment counter

 g_IMU_Exp_Count = 0x0000;

 } else {

 ++g_IMU_Exp_Count;

 }

 IMU_Bytes[4] = g_source_ID_Exp_Count >> 8; // put values into

array

 IMU_Bytes[5] = g_source_ID_Exp_Count;

 while (!is_Buffer_Empty() && (ii < 39)) {

 // reads from Circular Buffer into packetized buffer

 IMU_Bytes[ii] = read_Buffer();

 ii++;

 }

 while (ii < 39) {

 IMU_Bytes[ii] = 0x00;

 // fill the rest of the packetzied buffer with zeroes

 ii++;

 }

 ii = 0;

 break;

 case 1:

 // RAD

 source_ID <<= 14;

 // shift ID 14 bits to the left & fill the 14 bits with 1's

 g_source_ID_Exp_Count = source_ID | g_RAD_Exp_Count; // give source_ID_Exp_Count

appropriate value

 if (g_RAD_Exp_Count >= 0x3FFF) { //

increment counter

 g_RAD_Exp_Count = 0x0000;

 } else {

 ++g_RAD_Exp_Count;

 }

 RAD_Bytes[4] = g_source_ID_Exp_Count >> 8; // put values into

array

 RAD_Bytes[5] = g_source_ID_Exp_Count;

34

 while (!is_Buffer_Empty() && (ii < 39)) {

 // reads from Circular Buffer into packetized buffer

 RAD_Bytes[ii] = read_Buffer();

 ii++;

 }

 while (ii < 39) {

 RAD_Bytes[ii] = 0x00;

 // fill the rest of the packetzied buffer with zeroes

 ii++;

 }

 ii = 0;

 break;

 case 2:

 // POLY

 source_ID <<= 14;

 // shift ID 14 bits to the left & fill the 14 bits with 1's

 g_source_ID_Exp_Count = source_ID | g_POLY_Exp_Count; // give

source_ID_Exp_Count appropriate value

 if (g_POLY_Exp_Count >= 0x3FFF) { //

increment counter

 g_POLY_Exp_Count = 0x0000;

 } else {

 ++g_POLY_Exp_Count;

 }

 POLY_Bytes[4] = g_source_ID_Exp_Count >> 8; // put values into

array

 POLY_Bytes[5] = g_source_ID_Exp_Count;

 while (!is_Buffer_Empty() && (ii < 39)) {

 // reads from Circular Buffer into packetized buffer

 POLY_Bytes[ii] = read_Buffer();

 ii++;

 }

 while (ii < 39) {

 POLY_Bytes[ii] = 0x00;

 // fill the rest of the packetzied buffer with zeroes

 ii++;

 }

 break;

 }

}

uint8_t get_IMU_Data(uint8_t index) {

 return IMU_Bytes[index];

}

uint8_t get_RAD_Data(uint8_t index) {

 return RAD_Bytes[index];

}

35

uint8_t get_POLY_Data(uint8_t index) {

 return POLY_Bytes[index];

}

uint8_t get_Data(uint8_t index, uint8_t source_ID) {

 switch (source_ID) {

 case 0:

 default:

 return IMU_Bytes[index];

 case 1:

 return RAD_Bytes[index];

 case 2:

 return POLY_Bytes[index];

 }

}

SPI_Polling

SPI_Polling.h

/*

 * SPI_Pulling.h

 *

 * Created on: Aug 16, 2016

 * Author: aaronewing

 */

#include <msp430.h>

#include <stdint.h>

#ifndef SPI_POLLING_H_

#define SPI_POLLING_H_

void init_SPI (uint8_t pin_Setting); //

initalizes SPI clk rate and which pins are being used

void write_uint8_SPI (uint8_t tx_Data_8, uint8_t device_CS); // writes 8 bits with SPI

void write_uint16_SPI (uint16_t tx_Data_16, uint8_t device_CS); // writes 16 bits with SPI

uint16_t read_SPI (uint8_t transmit_Byte);

 // reads 8 bits with SPI

#endif /* SPI_POLLING_H_ */

SPI_Polling.c

/*

 * SPI_Pulling.c

 *

 * Created on: Aug 16, 2016

 * Author: aaronewing

36

 */

#include <msp430.h>

#include <stdint.h>

#include <stdbool.h>

#include "Comm.h"

uint8_t g_RXData;

////////////////////// SPI INIT /////////////////////////////////////

void init_SPI (uint8_t pin_Setting) {

 switch (pin_Setting) {

 case 0: // Hub

 default:

 // Configure Primary Function Pins

 P1SEL0 |= BIT4 | BIT6 | BIT7; // P1.4 - CLK, P1.6 - SIMO, P1.7 - SOMI

 P1SEL1 &= ~(BIT4 & BIT6 & BIT7);

 // configure as GPIO used to enable SPI write from Hub

 P4SEL0 &= ~(BIT1 + BIT4 + BIT5 + BIT6 + BIT7);

 P4SEL1 &= ~(BIT1 + BIT4 + BIT5 + BIT6 + BIT7);

 // P4.1 slave data ready line

 P4DIR &= ~BIT1;

 P4DIR |= BIT4 + BIT5 + BIT6 + BIT7;

// P4OUT |= BIT4; // Change for

science board BIT4: 1; BIT5: 2; BIT6: 3; BIT7: 4;

 P4OUT &= ~(BIT4 + BIT5 + BIT6 + BIT7); // Change for

science board BIT4: 1; BIT5: 2; BIT6: 3; BIT7: 4;

 break;

 case 1: // MSP430FR5969

 // Configure Primary Function Pins

 P1SEL0 |= BIT6 | BIT7; // P1.6 - SIMO, P1.7 - SOMI

 P2SEL0 |= BIT2; // P2.2 - CLK

 // configure as GPIO used to enable SPI write to Hub

 P4SEL0 &= ~BIT1;

 P4SEL1 &= ~BIT1; // P4.1 - SYNC/Slave Select

 P4DIR |= BIT1;

 P4OUT |= BIT1;

 break;

 case 2: // Polymer degradation board - Pot

 // Configure Primary Function Pins

 P1SEL0 |= BIT6 | BIT7; // P1.6 - SIMO, P1.7 - SOMI

 P2SEL0 |= BIT2; // P2.2 - CLK

 // configure as GPIO used to enable SPI write to Hub

 P1SEL0 &= ~BIT1;

 P1SEL1 &= ~BIT1; // P1.1 - SYNC/Slave Select

 P1DIR |= BIT1;

 P1OUT |= BIT1;

 break;

37

case 3: // Polymer degradation board -

other

// Configure Primary Function Pins

P1SEL0 |= BIT6 | BIT7; // P1.6 - SIMO, P1.7 - SOMI

P2SEL0 |= BIT2; // P2.2 - CLK

// configure as GPIO used to enable SPI write to Hub

P1SEL0 &= ~BIT2;

P1SEL1 &= ~BIT2; // P1.2 - SYNC/Slave Select

P1DIR |= BIT2;

P1OUT |= BIT2;

break;

}

 // Configure USCI_B0 for SPI operation

 UCB0CTLW0 |= UCSWRST; // **Put state machine in reset**

 UCB0CTLW0 |= UCMST | UCSYNC | UCMSB | UCCKPL; // 3-pin, 8-bit SPI master

 // Clock polarity high, MSB

 UCB0CTLW0 |= UCSSEL__SMCLK; // SMCLK

 UCB0BRW = 0x0008; // Divides SMCLK

module by 8 (8MHz/8 = 1MHz)

 UCA0MCTLW = 0; // No modulation

 UCB0CTLW0 &= ~UCSWRST; // **Initialize USCI state machine**

}

////////////////////// SPI WRITE 8 BIT /////////////////////////////////////

void write_uint8_SPI (uint8_t tx_Data_8, uint8_t device_CS) {

while (!(UCB0IFG & UCTXIFG)){}; // If able

to TX

switch (device_CS) { // Hub

case 0:

default:

// P4OUT &= ~BIT1;

// Pulls SYNC low

while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

UCB0TXBUF = tx_Data_8;

// 8 bits transmitted

while (UCB0STATW & UCBUSY) {}; // While

not busy

// P4OUT |= BIT1;

break;

case 1:

P2OUT &= ~BIT8;

// Pulls SYNC low

while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

UCB0TXBUF = tx_Data_8;

// 8 bits transmitted

while (UCB0STATW & UCBUSY) {};

38

P2OUT |= BIT6;

break;

case 2:

P3OUT &= ~BIT6;

// Pulls SYNC low

while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

UCB0TXBUF = tx_Data_8;

// 8 bits transmitted

while (UCB0STATW & UCBUSY) {};

P3OUT |= BIT6;

break;

case 3:

P4OUT &= ~BIT6;

// Pulls SYNC low

while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

UCB0TXBUF = tx_Data_8;

// 8 bits transmitted

while (UCB0STATW & UCBUSY) {};

P4OUT |= BIT6;

break;

}

}

////////////////////// SPI WRITE 16 BIT /////////////////////////////////////

void write_uint16_SPI (uint16_t tx_Data_16, uint8_t device_CS) {

while (!(UCB0IFG & UCTXIFG)){}; // If able

to TX

switch (device_CS) {

case 0: // Hub

default:

P4OUT &= ~BIT1;

// Pulls SYNC low

while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

UCB0TXBUF = (tx_Data_16 >> 8); // First 8

bits transmitted (Control bits and data)

while (!(UCB0IFG & UCTXIFG)) {};

UCB0TXBUF = tx_Data_16;

// Last 8 bits transmitted (overflow expected and is fine)

while (UCB0STATW & UCBUSY) {};

P4OUT |= BIT1;

break;

case 1:

P2OUT &= ~BIT8;

// Pulls SYNC low

while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

UCB0TXBUF = (tx_Data_16 >> 8); // First 8

bits transmitted (Control bits and data)

while (!(UCB0IFG & UCTXIFG)) {};

UCB0TXBUF = tx_Data_16;

// Last 8 bits transmitted (overflow expected and is fine)

while (UCB0STATW & UCBUSY) {};

P2OUT |= BIT6;

39

 break;

 case 2:

 P3OUT &= ~BIT6;

 // Pulls SYNC low

 while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

 UCB0TXBUF = (tx_Data_16 >> 8); // First 8

bits transmitted (Control bits and data)

 while (!(UCB0IFG & UCTXIFG)) {};

 UCB0TXBUF = tx_Data_16;

 // Last 8 bits transmitted (overflow expected and is fine)

 while (UCB0STATW & UCBUSY) {};

 P3OUT |= BIT6;

 break;

 case 3:

 P4OUT &= ~BIT6;

 // Pulls SYNC low

 while (!(UCB0IFG & UCTXIFG)) {}; // While TXing

 UCB0TXBUF = (tx_Data_16 >> 8); // First 8

bits transmitted (Control bits and data)

 while (!(UCB0IFG & UCTXIFG)) {};

 UCB0TXBUF = tx_Data_16;

 // Last 8 bits transmitted (overflow expected and is fine)

 while (UCB0STATW & UCBUSY) {};

 P4OUT |= BIT6;

 break;

 }

}

////////////////////// SPI READ POLLING //////////////////////////////////

uint16_t read_SPI (uint8_t transmit_Byte) {

 while (!(UCB0IFG & UCTXIFG) && !timeout) {}; // While TXing

 UCB0TXBUF = transmit_Byte; //

Transmits read_byte

 while ((UCB0STATW & UCBUSY) && !timeout) {}; // While

not busy

 while (!(UCB0IFG & UCRXIFG) && !timeout) {}; // While RX flag

is high

 g_RXData = UCB0RXBUF; // First 8

bits transmitted (Control bits and data)

 __delay_cycles(100);

 return g_RXData;

}

UART_Polling:

UART_Polling.h

/*

 * UART_Polling.h

 *

 * Created on: Aug 18, 2016

40

 * Author: aaronewing

 */

#ifndef UART_POLLING_H_

#define UART_POLLING_H_

void init_UART (bool baud_Rate, bool pin_Setting); // initalizes UART clk rate and which pins are being

used

// baud_Rate = 0 - 9600, 1 - 38400 (default), pin_Setting (0 - 2.0 TX, 2.1 RX, 2.2 BUSY (default), 1 - testing)

void write_UART (uint8_t TX_Data); // writes 8 bits with SPI

uint8_t read_UART (void);

uint8_t TX_Data;

#endif /* UART_POLLING_H_ */

UART_Polling.c

/*

 * SPI_Pulling.c

 *

 * Created on: Aug 16, 2016

 * Author: aaronewing

 */

#include <msp430.h>

#include <stdint.h>

#include <stdbool.h>

#include "UART_Polling.h"

#include "Comm.h"

#define UART_RADIO_BUSY 0x04 // P1.4

uint8_t RX_Data; // basically the radio ACK

////////////////////// UART INIT /////////////////////////////////////

void init_UART (bool baud_Rate, bool pin_Setting) {

 switch (pin_Setting) {

 case 0:

 default:

 // Configure Secondary Function Pins

 P2SEL0 |= BIT0 | BIT1; // P2.0 - TX, P2.1 - RX

 P2SEL1 &= ~(BIT0 | BIT1);

 P2SEL0 &= ~UART_RADIO_BUSY;

 P2SEL1 &= ~UART_RADIO_BUSY; // P2.2 - Radio Busy line

 P2DIR &= ~UART_RADIO_BUSY;

 P2IN &= ~UART_RADIO_BUSY;

 break;

 case 1:

 // Configure Secondary Function Pins

 P3SEL0 |= BIT4 | BIT5; // P3.4 - TX, P3.5 - RX

 P4SEL1 &= ~(BIT4 | BIT5);

 P1SEL0 &= ~UART_RADIO_BUSY;

 P1SEL1 &= ~UART_RADIO_BUSY; // P1.4 - Radio Busy line

41

P1DIR &= ~UART_RADIO_BUSY;

P1IN &= ~UART_RADIO_BUSY;

break;

}

 // XT1 Setup

/*

CSCTL0_H = CSKEY >> 8; // Unlock CS registers

CSCTL1 = DCOFSEL_0; // Set DCO to 1MHz

CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;

CSCTL0_H = 0; // Lock CS registers

*/

// Configure USCI_A0 for SPI operation

// UCA0CTL1 |= UCSWRST; // **Put state machine in reset**

//UCB0CTLW0 |= UCSSEL__SMCLK; // SMCLK

// UCB0BRW = 0x0000; //

Divides SMCLK module by 8 (8MHz/8 = 1MHz)

switch (baud_Rate) {

case 0:

// Configure Timer for 9600 Baud

UCA0CTL1 = UCSSEL__ACLK; // Set ACLK = 32768 as UCBRCLK

UCA0BR0 = 3; // 9600 baud

UCA0MCTLW |= 0x5300; // 32768/9600 - INT(32768/9600)=0.41

 // UCBRSx value = 0x53 (See UG)

UCA0BR1 = 0;

break;

case 1:

default:

// Configure Timer for 38400 Baud

UCA0CTL1 = UCSSEL__SMCLK; // Set SMCLK = 1000000 as UCBRCLK

UCA0BR0 = 0x1A; // 38400

baud

UCA0MCTLW |= 0x0100; // 1000000/38400 - INT(1000000/38400)=0.04

 // UCBRSx value = 0x01 (See UG)

// N = 0.0529,

effectively 38,383.4 Baud

UCA0BR1 = 0;

}

UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

}

////////////////////// UART WRITE POLLING /////////////////////////////////////

void write_UART (uint8_t TX_Data) {

while (!(UCA0IFG & UCTXIFG)){}; // If able to TX

while (P1IN == UART_RADIO_BUSY) {}; // If Radio is not busy

UCA0TXBUF = TX_Data; // 8 bits

transmitted

}

////////////////////// UART READ POLLING //////////////////////////////////

uint8_t read_UART (void) {

42

while (!(UCA0IFG & UCRXIFG) && !timeout) {}; // While RX flag is high

RX_Data = UCA0RXBUF; // Recieve Radio

ACK

return RX_Data;

}

Initialize:

Initialize.h

/*

* Initialize.h

*

* Created on: Aug 11, 2016

* Author: aaronewing

*/

// contains all functions for Initializing MSP430

#ifndef INITIALIZE_H_

#define INITIALIZE_H_

void initialize_Ports(void);

void initialize_Clocks(void);

#endif /* INITIALIZE_H_ */

Initialize.c

/*

* Initialize.c

*

* Created on: Aug 0xFFFF0xFFFF, 200xFFFF6

* Author: aaronewing

*/

// contains all functions for Initializing MSP430

#include <msp430fr6989.h>

#include "Initialize.h"

void initialize_Clocks(void) { // Sets all clocks

to standard position

 PJSEL0 |= BIT4 | BIT6; // LFXT (BIT4) HFXT (BIT6)

 PJSEL1 &= ~(BIT4 + BIT6); // LFXT (BIT4) HFXT (BIT6)

 CSCTL0_H = CSKEY >> 8; // Unlock CS registers

 CSCTL2 = SELA__LFXTCLK | SELS__HFXTCLK | SELM__HFXTCLK; // ACLK-LFXT, SMCLK-HFXT,

MCLK-HFXT

CSCTL3 = DIVA_0 | DIVS__8 | DIVM__8; // set all dividers

 CSCTL4 = HFFREQ_1;

 CSCTL4 &= ~(HFXTOFF + LFXTOFF);

do

43

{

CSCTL5 &= ~(LFXTOFFG + HFXTOFFG); // Clear LFXT fault flag

SFRIFG1 &= ~OFIFG;

}

while (SFRIFG1&OFIFG); // Test oscillator fault flag

 CSCTL0_H = 0; // Lock CS registers

 CSCTL0_H = 0;

}

void initialize_Ports(void){ // sets all pins on all ports as an output (except Port 10)

PM5CTL0 &= ~LOCKLPM5;

P1DIR |= 0xFFFF;

P2DIR |= 0xFFFF;

P3DIR |= 0xFFFF;

// P4DIR |= 0xFFFF;

P5DIR |= 0xFFFF;

P6DIR |= 0xFFFF;

P7DIR |= 0xFFFF;

P8DIR |= 0xFFFF;

P9DIR |= 0xFFFF;

P10DIR |= 0xFFFF; // Pins 0, 1, and 2 are the only ones to exist

on Port 10

P1OUT = 0x000; // sets all pins on all ports to a low output

(redundant)

P2OUT = 0x000;

P3OUT = 0x000;

// P4OUT = 0x000;

P5OUT = 0x000;

P6OUT = 0x000;

P7OUT = 0x000;

P8OUT = 0x000;

P9OUT = 0x000;

P10OUT = 0x000;

}

Matlab Packet Parser:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

clear all;

close all;

% create a structs for the POLY and RAD data

field1 = 'header'; value1 = zeros(1,6);

field2 = 'number'; value2 = zeros(1,2);

field3 = 'data'; value3 = zeros(1,64);

field4 = 'avgPeriodCount'; value4 = zeros(1,10);

field5 = 'periodCounts'; value5 = zeros(1,79);

field6 = 'rawADC'; value6 = zeros(1,208);

field7 = 'healthpacket'; value7 = zeros(1,11);

RAWPackets = struct(field1,value1,field2,value2,field3,value3);

POLYPackets = struct(field1,value1,field2,value2,field3,value3);

cantstruct = struct(field4,value4,field5,value5,field6,value6,field7,value7);

44

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

RADPackets = struct(field1,value1,field2,value2,field3,value3);

% read RAW packet data from the .csv file downloaded from NSL

%fileID = fopen('NSL_0-788285_FnCode_A1_data.csv');

%fileID = fopen('Poly_Board_Packets_On_Ground.csv');

fileID = fopen('MakerSatData.csv');

%PacketDataCellArray = textscan(fileID,'%s %s %s %s %s %s %s','Delimiter',',');

PacketDataCellArray = textscan(fileID,'%q','Delimiter',',');

fclose(fileID);

% grab packets from file and parse them into headder bit, packet number,

% and packet data.

% The first 3 elements of each packet string and last 3 are thrown away (""" and """)

jj = 1;

% for ii = 1:2:length(PacketDataCellArray{1,4})

% RAWPackets.header(jj,:) = PacketDataCellArray{1,4}{ii,1}(1,4:9);

% RAWPackets.number(jj,:) = PacketDataCellArray{1,4}{ii,1}(1,10:11);

% RAWPackets.data(jj,:) = PacketDataCellArray{1,4}{ii,1}(1,12:end-3);

% jj = jj + 1;

% end

for ii = 2:length(PacketDataCellArray{1,1})

 RAWPackets.header(jj,:) = PacketDataCellArray{1,1}{ii,1}(1,1:6);

 RAWPackets.number(jj,:) = PacketDataCellArray{1,1}{ii,1}(1,7:8);

 RAWPackets.data(jj,:) = PacketDataCellArray{1,1}{ii,1}(1,9:end);

 jj = jj + 1;

end

% sort RAWPackets by header type (i.e.,

[POLYPackets, RADPackets] = sortPackets(RAWPackets);

if (~isempty(POLYPackets.number))

 [POLYPackets, cantstruct] = getPOLYData(POLYPackets);%,cantstruct);

end

if (~isempty(RADPackets.number))

% [RADpacketNumbers, RADData] = getRADData(RADPackets);

end

measSessionNum = 1;

figure

plot(count2freq(cantstruct(measSessionNum,1).periodCounts),'r');

hold on;

plot(count2freq(cantstruct(measSessionNum,2).periodCounts),'b');

45

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

plot(count2freq(cantstruct(measSessionNum,3).periodCounts),'g');

plot(count2freq(cantstruct(measSessionNum,4).periodCounts),'k');

plot(count2freq(cantstruct(measSessionNum,5).periodCounts),'m');

xlabel('Sample')

ylabel('Frequency (Hz)')

%axis([0 length(cantstruct(measSessionNum,1).periodCounts) 0 200])

legend('Cant 1','Cant 2','Cant 3','Cant 4','Cant 5')

figure

plot(cantstruct(measSessionNum,3).rawADC,'r');

hold on;

plot(cantstruct(measSessionNum,5).rawADC,'b');

xlabel('Sample')

ylabel('Amplitude')

%axis([0 length(cantstruct(1).periodCounts) 0 100000])

legend('Cant 3','Cant 5')

figure

plot(cantstruct(measSessionNum,6).healthpacket,'r');

xlabel('total averaged values')

ylabel('Amplitude')

%axis([0 length(cantstruct(1).periodCounts) 0 100000])

legend('healthpacket')

Linker Command File:

/* == */

/* Copyright (c) 2016, Texas Instruments Incorporated */

/* All rights reserved. */

/* */

/* Redistribution and use in source and binary forms, with or without */

/* modification, are permitted provided that the following conditions */

/* are met: */

/* */

/* * Redistributions of source code must retain the above copyright */

/* notice, this list of conditions and the following disclaimer. */

/* */

/* * Redistributions in binary form must reproduce the above copyright */

/* notice, this list of conditions and the following disclaimer in the */

/* documentation and/or other materials provided with the distribution. */

/* */

/* * Neither the name of Texas Instruments Incorporated nor the names of */

/* its contributors may be used to endorse or promote products derived */

/* from this software without specific prior written permission. */

/* */

/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" */

/* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, */

/* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */

/* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */

/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, */

/* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, */

46

/* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; */

/* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, */

/* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */

/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */

/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */

/* == */

/**/

/* lnk_msp430fr6989.cmd - LINKER COMMAND FILE FOR LINKING MSP430FR6989 PROGRAMS */

/* */

/* Usage: lnk430 <obj files...> -o <out file> -m <map file> lnk.cmd */

/* cl430 <src files...> -z -o <out file> -m <map file> lnk.cmd */

/* */

/*--*/

/* These linker options are for command line linking only. For IDE linking, */

/* you should set your linker options in Project Properties */

/* -c LINK USING C CONVENTIONS */

/* -stack 0x0100 SOFTWARE STACK SIZE */

/* -heap 0x0100 HEAP AREA SIZE */

/* */

/*--*/

/* Version: 1.192 */

/*--*/

/**/

/* Specify the system memory map */

/**/

MEMORY
{

 TINYRAM : origin = 0x0006, length = 0x001A

 PERIPHERALS_8BIT : origin = 0x0020, length = 0x00E0

 PERIPHERALS_16BIT : origin = 0x0100, length = 0x0100

 RAM : origin = 0x1C00, length = 0x0800

 INFOA : origin = 0x1980, length = 0x0080

 INFOB : origin = 0x1900, length = 0x0080

 INFOC : origin = 0x1880, length = 0x0080

 INFOD : origin = 0x1800, length = 0x0080

 FRAM : origin = 0x4400, length = 0xBB80

 FRAM2 : origin = 0x10000,length = 0x14000

 JTAGSIGNATURE : origin = 0xFF80, length = 0x0004, fill = 0xFFFF

 BSLSIGNATURE : origin = 0xFF84, length = 0x0004, fill = 0xFFFF

 IPESIGNATURE : origin = 0xFF88, length = 0x0008, fill = 0xFFFF

 INT00 : origin = 0xFF90, length = 0x0002

 INT01 : origin = 0xFF92, length = 0x0002

 INT02 : origin = 0xFF94, length = 0x0002

 INT03 : origin = 0xFF96, length = 0x0002

 INT04 : origin = 0xFF98, length = 0x0002

 INT05 : origin = 0xFF9A, length = 0x0002

 INT06 : origin = 0xFF9C, length = 0x0002

 INT07 : origin = 0xFF9E, length = 0x0002

 INT08 : origin = 0xFFA0, length = 0x0002

 INT09 : origin = 0xFFA2, length = 0x0002

 INT10 : origin = 0xFFA4, length = 0x0002

 INT11 : origin = 0xFFA6, length = 0x0002

 INT12 : origin = 0xFFA8, length = 0x0002

47

 INT13 : origin = 0xFFAA, length = 0x0002

 INT14 : origin = 0xFFAC, length = 0x0002

 INT15 : origin = 0xFFAE, length = 0x0002

 INT16 : origin = 0xFFB0, length = 0x0002

 INT17 : origin = 0xFFB2, length = 0x0002

 INT18 : origin = 0xFFB4, length = 0x0002

 INT19 : origin = 0xFFB6, length = 0x0002

 INT20 : origin = 0xFFB8, length = 0x0002

 INT21 : origin = 0xFFBA, length = 0x0002

 INT22 : origin = 0xFFBC, length = 0x0002

 INT23 : origin = 0xFFBE, length = 0x0002

 INT24 : origin = 0xFFC0, length = 0x0002

 INT25 : origin = 0xFFC2, length = 0x0002

 INT26 : origin = 0xFFC4, length = 0x0002

 INT27 : origin = 0xFFC6, length = 0x0002

 INT28 : origin = 0xFFC8, length = 0x0002

 INT29 : origin = 0xFFCA, length = 0x0002

 INT30 : origin = 0xFFCC, length = 0x0002

 INT31 : origin = 0xFFCE, length = 0x0002

 INT32 : origin = 0xFFD0, length = 0x0002

 INT33 : origin = 0xFFD2, length = 0x0002

 INT34 : origin = 0xFFD4, length = 0x0002

 INT35 : origin = 0xFFD6, length = 0x0002

 INT36 : origin = 0xFFD8, length = 0x0002

 INT37 : origin = 0xFFDA, length = 0x0002

 INT38 : origin = 0xFFDC, length = 0x0002

 INT39 : origin = 0xFFDE, length = 0x0002

 INT40 : origin = 0xFFE0, length = 0x0002

 INT41 : origin = 0xFFE2, length = 0x0002

 INT42 : origin = 0xFFE4, length = 0x0002

 INT43 : origin = 0xFFE6, length = 0x0002

 INT44 : origin = 0xFFE8, length = 0x0002

 INT45 : origin = 0xFFEA, length = 0x0002

 INT46 : origin = 0xFFEC, length = 0x0002

 INT47 : origin = 0xFFEE, length = 0x0002

 INT48 : origin = 0xFFF0, length = 0x0002

 INT49 : origin = 0xFFF2, length = 0x0002

 INT50 : origin = 0xFFF4, length = 0x0002

 INT51 : origin = 0xFFF6, length = 0x0002

 INT52 : origin = 0xFFF8, length = 0x0002

 INT53 : origin = 0xFFFA, length = 0x0002

 INT54 : origin = 0xFFFC, length = 0x0002

 RESET : origin = 0xFFFE, length = 0x0002

}

/**/

/* Specify the sections allocation into memory */

/**/

SECTIONS
{

 GROUP(RW_IPE)

 {

 GROUP(READ_WRITE_MEMORY)

 {

 .TI.persistent : {} /* For #pragma persistent */

48

 .cio : {} /* C I/O Buffer */

 .sysmem : {} /* Dynamic memory allocation area */

 } PALIGN(0x0400), RUN_START(fram_rw_start)

 GROUP(IPENCAPSULATED_MEMORY)

 {

 .ipestruct : {} /* IPE Data structure */

 .ipe : {} /* IPE */

 .ipe_const : {} /* IPE Protected constants */

 .ipe:_isr : {} /* IPE ISRs */

 .ipe_vars : type = NOINIT{} /* IPE variables */

 } PALIGN(0x0400), RUN_START(fram_ipe_start) RUN_END(fram_ipe_end) RUN_END(fram_rx_start)

 } > 0x4400

 .cinit : {} > FRAM /* Initialization tables */

 .pinit : {} > FRAM /* C++ Constructor tables */

 .binit : {} > FRAM /* Boot-time Initialization tables */

 .init_array : {} > FRAM /* C++ Constructor tables */

 .mspabi.exidx : {} > FRAM /* C++ Constructor tables */

 .mspabi.extab : {} > FRAM /* C++ Constructor tables */

#ifndef __LARGE_DATA_MODEL__

 .const : {} > FRAM /* Constant data */

#else
 .const : {} >> FRAM | FRAM2 /* Constant data */

#endif

 .text:_isr : {} > FRAM /* Code ISRs */

#ifndef __LARGE_DATA_MODEL__

 .text : {} > FRAM /* Code */

#else
 .text : {} >> FRAM2 | FRAM /* Code */

#endif
#ifdef __TI_COMPILER_VERSION__

 #if __TI_COMPILER_VERSION__ >= 15009000

 #ifndef __LARGE_DATA_MODEL__

 .TI.ramfunc : {} load=FRAM, run=RAM, table(BINIT)

 #else
 .TI.ramfunc : {} load=FRAM | FRAM2, run=RAM, table(BINIT)

 #endif

 #endif

#endif

 .jtagsignature : {} > JTAGSIGNATURE /* JTAG Signature */

 .bslsignature : {} > BSLSIGNATURE /* BSL Signature */

 GROUP(SIGNATURE_SHAREDMEMORY)

 {

 .ipesignature : {} /* IPE Signature */

 .jtagpassword : {} /* JTAG Password */

 } > IPESIGNATURE

 .bss : {} > FRAM /* Global & static vars */

 .data : {} > FRAM /* Global & static vars */

 .TI.noinit : {} > FRAM /* For #pragma noinit */

 .stack : {} > RAM (HIGH) /* Software system stack */

 .tinyram : {} > TINYRAM /* Tiny RAM */

49

 .infoA : {} > INFOA /* MSP430 INFO FRAM Memory segments */

 .infoB : {} > INFOB

 .infoC : {} > INFOC

 .infoD : {} > INFOD

 /* MSP430 Interrupt vectors */

 .int00 : {} > INT00

 .int01 : {} > INT01

 .int02 : {} > INT02

 .int03 : {} > INT03

 .int04 : {} > INT04

 .int05 : {} > INT05

 .int06 : {} > INT06

 .int07 : {} > INT07

 .int08 : {} > INT08

 .int09 : {} > INT09

 .int10 : {} > INT10

 .int11 : {} > INT11

 .int12 : {} > INT12

 .int13 : {} > INT13

 .int14 : {} > INT14

 .int15 : {} > INT15

 .int16 : {} > INT16

 .int17 : {} > INT17

 .int18 : {} > INT18

 .int19 : {} > INT19

 .int20 : {} > INT20

 .int21 : {} > INT21

 .int22 : {} > INT22

 .int23 : {} > INT23

 .int24 : {} > INT24

 .int25 : {} > INT25

 .int26 : {} > INT26

 AES256 : { * (.int27) } > INT27 type = VECT_INIT

 RTC : { * (.int28) } > INT28 type = VECT_INIT

 LCD_C : { * (.int29) } > INT29 type = VECT_INIT

 PORT4 : { * (.int30) } > INT30 type = VECT_INIT

 PORT3 : { * (.int31) } > INT31 type = VECT_INIT

 TIMER3_A1 : { * (.int32) } > INT32 type = VECT_INIT

 TIMER3_A0 : { * (.int33) } > INT33 type = VECT_INIT

 PORT2 : { * (.int34) } > INT34 type = VECT_INIT

 TIMER2_A1 : { * (.int35) } > INT35 type = VECT_INIT

 TIMER2_A0 : { * (.int36) } > INT36 type = VECT_INIT

 PORT1 : { * (.int37) } > INT37 type = VECT_INIT

 TIMER1_A1 : { * (.int38) } > INT38 type = VECT_INIT

 TIMER1_A0 : { * (.int39) } > INT39 type = VECT_INIT

 DMA : { * (.int40) } > INT40 type = VECT_INIT

 USCI_B1 : { * (.int41) } > INT41 type = VECT_INIT

 USCI_A1 : { * (.int42) } > INT42 type = VECT_INIT

 TIMER0_A1 : { * (.int43) } > INT43 type = VECT_INIT

 TIMER0_A0 : { * (.int44) } > INT44 type = VECT_INIT

 ADC12 : { * (.int45) } > INT45 type = VECT_INIT

 USCI_B0 : { * (.int46) } > INT46 type = VECT_INIT

 USCI_A0 : { * (.int47) } > INT47 type = VECT_INIT

 ESCAN_IF : { * (.int48) } > INT48 type = VECT_INIT

50

 WDT : { * (.int49) } > INT49 type = VECT_INIT

 TIMER0_B1 : { * (.int50) } > INT50 type = VECT_INIT

 TIMER0_B0 : { * (.int51) } > INT51 type = VECT_INIT

 COMP_E : { * (.int52) } > INT52 type = VECT_INIT

 UNMI : { * (.int53) } > INT53 type = VECT_INIT

 SYSNMI : { * (.int54) } > INT54 type = VECT_INIT

 .reset : {} > RESET /* MSP430 Reset vector */

}

/**/

/* MPU/IPE Specific memory segment definitons */

/**/

#ifdef _IPE_ENABLE

 #define IPE_MPUIPLOCK 0x0080

 #define IPE_MPUIPENA 0x0040

 #define IPE_MPUIPPUC 0x0020

 // Evaluate settings for the control setting of IP Encapsulation

 #if defined(_IPE_ASSERTPUC1)

 #if defined(_IPE_LOCK) && (_IPE_ASSERTPUC1 == 0x08))

 fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPPUC |IPE_MPUIPLOCK);

 #elif defined(_IPE_LOCK)

 fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPLOCK);

 #elif (_IPE_ASSERTPUC1 == 0x08)

 fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPPUC);

 #else
 fram_ipe_enable_value = (IPE_MPUIPENA);

 #endif

 #else
 #if defined(_IPE_LOCK)

 fram_ipe_enable_value = (IPE_MPUIPENA | IPE_MPUIPLOCK);

 #else
 fram_ipe_enable_value = (IPE_MPUIPENA);

 #endif

 #endif

 // Segment definitions

 #ifdef _IPE_MANUAL // For custom sizes selected in the GUI

 fram_ipe_border1 = (_IPE_SEGB1>>4);

 fram_ipe_border2 = (_IPE_SEGB2>>4);

 #else // Automated sizes generated by the Linker

 fram_ipe_border2 = fram_ipe_end >> 4;

 fram_ipe_border1 = fram_ipe_start >> 4;

 #endif

 fram_ipe_settings_struct_address = Ipe_settingsStruct >> 4;

 fram_ipe_checksum = ~((fram_ipe_enable_value & fram_ipe_border2 & fram_ipe_border1) |

(fram_ipe_enable_value & ~fram_ipe_border2 & ~fram_ipe_border1) | (~fram_ipe_enable_value &

fram_ipe_border2 & ~fram_ipe_border1) | (~fram_ipe_enable_value & ~fram_ipe_border2 & fram_ipe_border1));

#endif

#ifdef _MPU_ENABLE

 #define MPUPW (0xA500) /* MPU Access Password */

 #define MPUENA (0x0001) /* MPU Enable */

 #define MPULOCK (0x0002) /* MPU Lock */

51

 #define MPUSEGIE (0x0010) /* MPU Enable NMI on Segment violation */

 __mpu_enable = 1;

 // Segment definitions

 #ifdef _MPU_MANUAL // For custom sizes selected in the GUI

 mpu_segment_border1 = _MPU_SEGB1 >> 4;

 mpu_segment_border2 = _MPU_SEGB2 >> 4;

 mpu_sam_value = (_MPU_SAM0 << 12) | (_MPU_SAM3 << 8) | (_MPU_SAM2 << 4) | _MPU_SAM1;

 #else // Automated sizes generated by Linker

 #ifdef _IPE_ENABLE //if IPE is used in project too

 //seg1 = any read + write persistent variables

 //seg2 = ipe = read + write + execute access

 //seg3 = code, read + execute only

 mpu_segment_border1 = fram_ipe_start >> 4;

 mpu_segment_border2 = fram_rx_start >> 4;

 mpu_sam_value = 0x1573; // Info R, Seg3 RX, Seg2 RWX, Seg1 RW

 #else
 mpu_segment_border1 = fram_rx_start >> 4;

 mpu_segment_border2 = fram_rx_start >> 4;

 mpu_sam_value = 0x1513; // Info R, Seg3 RX, Seg2 R, Seg1 RW

 #endif

 #endif
 #ifdef _MPU_LOCK

 #ifdef _MPU_ENABLE_NMI

 mpu_ctl0_value = MPUPW | MPUENA | MPULOCK | MPUSEGIE;

 #else
 mpu_ctl0_value = MPUPW | MPUENA | MPULOCK;

 #endif

 #else
 #ifdef _MPU_ENABLE_NMI

 mpu_ctl0_value = MPUPW | MPUENA | MPUSEGIE;

 #else
 mpu_ctl0_value = MPUPW | MPUENA;

 #endif

 #endif

#endif

/**/

/* Include peripherals memory map */

/**/

-l msp430fr6989.cmd

