

NORTHWEST NAZARENE UNIVERSITY

Creation of a Web-Based Audio Recorder Utilizing a

USB Foot Pedal and External Microphone.

THESIS

Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements for the degree of

BACHELOR OF ARTS

Isaac L. Kronz

2019

THESIS

Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements for the degree of

BACHELOR OF ARTS

Isaac L. Kronz

2019

Creation of a Web-Based Audio Recorder Utilizing a USB Foot Pedal and External Microphone.

Author: ___
Isaac Kronz

Approved: ___
Barry L. Myers, Ph.D., Chair, Department of Mathematics & Computer Science
Faculty Advisor

Approved: ___
Stephen P. Riley, Ph.D., Department of Theology and Christian Ministry, Second
Reader

Approved: ___
Barry L. Myers, Ph.D., Chair, Department of Mathematics & Computer Science

 iii

Abstract

Creation of a Web-Based Audio Recorder Utilizing a USB Foot Pedal and External Microphone.

KRONZ, ISAAC (Department of Mathematics and Computer Science),
MYERS, DR. BARRY (Department of Mathematics and Computer Science).

Recording via the browser is not a new technology by any means, but this project aims to do
much more. The goal of this project is to create a web-based audio recorder that takes input from
a foot pedal, gives an option as to what audio input to choose, and uploads the encoded audio to
a server for playing, renaming, or deleting. A key objective of this project is also to minimize the
amount of browser delay there is between recordings. This delay could be potentially halved by
splitting up the audio recordings by increments of time, encoding them in the background, and
then sending those chunks to the server. Another potential solution to the delay is to send a
binary stream of the audio directly to the server and have it encoded on that end. The result of
this project should be a baseline product that can be improved for medical dictation in pathology,
but can be extended to any similar purpose.

 iv

Acknowledgements

 I would like to thank my parents, who supported me monetarily, mentally, and

emotionally through the wild ride that college has been. I would also like to thank all of the

professors here at NNU that have not taught me so well, especially Dr. Myers and Dr. Hamilton.

Also, thanks to my uncle, Jason Kronz, for giving me the idea and push to do this project.

Finally, a special thanks goes to my classmates Ryan, Zach, Nick, and Hanna for being there for

me since day one for questions, laughs, and being willing to be a second eye for my projects.

 v

Table of Contents

Title Page ……………………………………………………………………… i

Signature Page ……………………………………………………………………… ii

Abstract ……………………………………………………………………… iii

Acknowledgements ……………………………………………………………………… iv

Table of Contents ……………………………………………………………………… v

Table of Figures ……………………………………………………………………… vii

Overview ……………………………………………………………………… 1

Background ……………………………………………………………………… 1

Terms ……………………………………………………………………… 2

Implementation ……………………………………………………………………… 3

Results ……………………………………………………………………… 13

Conclusion ……………………………………………………………………… 18

References ……………………………………………………………………… 20

Appendix A ……………………………………………………………………… 21

 back.php ……………………………………………………………………… 21

 backend.php ……………………………………………………………………… 21

 index.html ……………………………………………………………………… 23

 launch.sh ……………………………………………………………………… 24

 php.ini ……………………………………………………………………… 24

 README.md ……………………………………………………………………… 25

 style.css ……………………………………………………………………… 25

 js ……………………………………………………………………… 28

 vi

 app.js ……………………………………………………………………… 28

Appendix B ……………………………………………………………………… 36

 app.js ……………………………………………………………………… 36

 package.json ……………………………………………………………………… 37

 README.md ……………………………………………………………………… 38

 public ……………………………………………………………………… 38

 recorder.js ……………………………………………………………………… 38

 tpl ……………………………………………………………………… 40

 index.jade ……………………………………………………………………… 40

 style.css ……………………………………………………………………… 41

 vii

Table of Figures

Figure 1 ……………………………………………………………………… 3

Figure 2 ……………………………………………………………………… 4

Figure 3 ……………………………………………………………………… 5

Figure 4 ……………………………………………………………………… 6

Figure 5 ……………………………………………………………………… 6

Figure 6 ……………………………………………………………………… 7

Figure 7 ……………………………………………………………………… 7

Figure 8 ……………………………………………………………………… 8

Figure 9 ……………………………………………………………………… 9

Figure 10 ……………………………………………………………………… 9

Figure 11 ……………………………………………………………………… 10

Figure 12 ……………………………………………………………………… 11

Figure 13 ……………………………………………………………………… 12

Figure 14 ……………………………………………………………………… 13

Figure 15 ……………………………………………………………………… 14

Figure 16 ……………………………………………………………………… 14

Figure 17 ……………………………………………………………………… 15

Figure 18 ……………………………………………………………………… 15

Figure 19 ……………………………………………………………………… 16

Figure 20 ……………………………………………………………………… 16

Figure 21 ……………………………………………………………………… 17

 1

Overview

 The goal of this project was to create a proof-of-concept of a web-based dictation

software. Not only would it need to record audio and upload it to a server, it has to be able to

take input from any audio source, record at the push of a foot pedal, and have minimum to no

delay between recordings. There were a few challenges that had to be overcome when

developing this software. First, most foot pedals are proprietary, meaning they only work with

specific native software solutions, and do not give normal keyboard-like inputs to the PC like

most similar devices do. Another challenge was dealing with the delays caused by encoding on

the client-side, and deciding how to remedy that problem. Finally, an overarching problem was

learning to interact with audio inputs and managing that data in the browser, which is still pretty

recent technology.

Background

 This project began as a solution to a problem of Joseph Kronz M.D., who is a local

pathologist. Pathologists look at slides of tissue under a microscope in order to determine if the

tissue sample has evidence of being cancerous or not. In order for this to be done correctly and

efficiently, pathologists dictate their findings on a microphone, which is then played back by an

assistant who transcribes the dictation. While many may use proprietary native software for this

dictation, Dr. Kronz and his brother, Jason Kronz, want to incorporate dictation into a web-based

software they are already developing for pathology. This project would hopefully be something

they could drop into their existing product, and easily add features to the existing barebones set.

 2

Terms

 This project required learning and using many languages, technologies, and frameworks

that the reader may not have come in contact with before. These need to be defined in order for

any reader to have a full understanding of the project.

 HTML (HyperText Markup Language) and CSS (Cascading Style Sheets) are the basic

building blocks of websites, creating the text, form, color, and styling of the site. Javascript is a

web programming language that allows a website to become interactive. Whether sending

information to a server or accessing the microphone, it is a extremely versatile, one of the most

used programming languages in the world, and the cornerstone of this project. PHP (Personal

Home Page) is an older programming language built primarily for web servers, and is used as

such in this project.

 Node.js is one of the newer and faster server environments on the scene, written in

Javascript. It allows for web hosting and expansion with many Javascript frameworks. The

second implementation of my project utilizes Node.js with a few other frameworks in order to

allow for binary streaming. These include the Express.js library, which is one of the most

popular web frameworks for Node. Next is Binary.js, which is a binary streaming library for

Node/Javascript. Binary.js allows for direct streams of information from one endpoint to another.

Jade is a what is referred to as a template engine, which basically allows for the writing of more

efficient HTML in Javascript.

 Outside of the programming languages and frameworks, there are a few other various

definitions that will aid in understanding of the project. WAV (Waveform Audio File Format) is

an audio format for storing an audio bitstream. MP3 (Moving Picture Experts Group-1 Audio

Layer-3) is an encoded and compressed audio format that retains the audio of the original source

 3

but dramatically reduces the file size. OGG is a fairly common audio format made by Xiph.Org

Foundation, and unlike its peers in this terms section, actually is not an acronym. VIM (Visual

Instrument iMproved) is an old command-line based text editor. HID (Human Interface Device)

refers to peripheral devices that give the computer inputs from humans, like keyboards and mice.

Implementation

 This project began with a large amount of research being done on Google for Javascript-

based encoding software. This resulted in coming across WebAudioRecorder.js (Higuma, 2016),

a Javascript library for encoding. However, no successful implementations were immediately

shown, until the following demo was found (“Addpipe”, 2018). This is what provided the

foundation for this project.

 To begin, VIM was decided upon as the text editor, both to familiarize the author with it

more, and for ease-of-use since command prompts were used for launching and keeping track of

multiple servers already.

Figure 1 - HTML for the first project

 4

 In order to set up a quick server on localhost to test everything to see if it was functional,

the following script was run.

Figure 2 - Localhost server

The site started up, and the recording and playback functioned. First, the HTML and CSS

were re-formatted to be better named, commented, formatted, and organized. Next, the Javascript

was examined on the app and commented through to understand what was happening behind the

scenes. The following are screenshots of the app.js file.

 5

Figure 3 - Javascript for audio recording

The above section creates an audioContext in order to start the recording. Then it creates

a new instance of the WebAudioRecorder, specifies the encoding, and begins the recording

process.

 6

Figure 4 - Javascript for audio blob creation

The above code snipped displays the creation of a blob and its output to the list. In the

same function as the code shown above, Javascript that sent the blob to the server was added.

Figure 5 - POST method to backend.php

This uses the POST method to hit the backend PHP script which does the final step of

bringing the file into the system on the server side.

 7

Figure 6 - Backend PHP

The above PHP gets the file, checks for the filetype, gives it a name, and moves it into

the /uploads folder. There was one glaring issue when dealing with this, which was that the

maximum file size only allowed for uploads of less than 2MB, basically impossible for audio

uploads (this is why image files are allowed through the backend.php, they were used for

testing). After a little searching, the solution was found in editing a PHP config file for my

laptop, PHP.ini, in /private/etc/. The following two lines were changed, thus allowing for much

larger files to be uploaded.

Figure 7 - PHP.ini upload size

 8

After all the above was completed, the web app succeeded in doing everything expected

of it. Requests can be seen to main page and its styling, as well as the Javascript files when

recording. As shown in the figure below, after a recording had taken place, the backend PHP

script was hit with the uploaded audio file.

Figure 8 - Server log

After setting up the PHP server that simply placed the uploaded files into a folder, a

graphical solution was needed for viewing and interacting with those files. A plug-and-play

solution was decided upon in order to not expand the scope to custom-writing an interface for it.

After some research was done, a program called FileBrowser (“Filebrowser,” 2019) was decided

upon to be a web front-end to the filesystem. Due to its easy-to-use yet powerful tools (user

creation, authorization levels, etc.), it was a simple choice. It was extremely simple to get up and

 9

running after installation, simply running the following command in the folder of choice would

start up a server.

Figure 9 - FileBrowser server log

 After everything else had been set up, the final piece of the project was incorporating the

foot pedal. The pedal that is used by Dr. Kronz is the Infinity IN-USB-2 (“Infinity Foot Pedals,”

n.d.).

Figure 10 - Infinity foot pedal

After 5-10 hours of research and testing, there was no way of collecting the inputs from

the foot pedal into the computer without proprietary software, let alone the browser. Meeting

with Jason Kronz, a co-sponsor of the project and an electrical engineer, he decided the best

course of action would be to change some of the insides. Using a USB Rubber Ducky and some

 10

soldering, he took apart the inner embedded computer and replaced it with the Ducky, changing

the outputs into normal keyboard outputs. This caused the foot pedal’s outputs to act as if it was

an HID device, readable by Javascript.

After the hacking of the foot pedal, time was spent investigating what input it sent, and

how to read it best. The following is the code for getting the input from the foot pedal.

Figure 11 - Javascript for pedal inputs

Originally, the event.keyCode was used, but it was faulty and outdated, so the simpler,

event.code was used instead. The foot pedal continuously sent the code “MM” twice to signal the

petal being held down, and it sent the code “NN” once when it was lifted off. These codes would

be used to call the startRecording() and stopRecording() functions for each press and lift,

respectively. In the future, the key codes for the other two pedals could be used for other

functions, such as skipping ahead or resetting the recording.

There will not be future work on this project, due to the fact that it is functional and

complete as it is, and the delay issues are solved in the second project. This project cannot very

 11

well implement the binary streaming of the audio with its current PHP backend. There will be

future work in the second project, discussed below.

 The second project is not nearly as advanced and complete as the first. The reason for

creating an entirely different project is that the solution requires streaming the actual binary from

the web browser to the server and encoding on the server side. After hours of searching, only a

couple solutions were found, these being ScriptProcessorNode (Khan, 2019) and RecordRTC

(“ScriptProcessorNode,” 2019). Only one actual implementation of one of these was found,

becoming the building blocks for this project (Poca, 2016). After running, however, it was

apparent that there were some issues.

 After awhile of troubleshooting, the solution to getting it to begin running was to update

Node:

Figure 12 - Node updates

 12

 Updating Node was not the only thing necessary to get it up and running. There were

many missing modules that needed to be installed. An example of erroring and installing a

missing module are shown below.

Figure 13 - NPM debug console output

 Using this process, the Express, Binary.js, WAV, and Jade modules were installed. This

finally ended with the successful launch of the app, displayed in the results section. After some

research in Jade and CSS, the app was changed to make it a little more personable.

 Future work on this area basically means adding all of the features that project one had.

This includes foot pedal support, playback on the same window, and a playback from the

uploaded server (via Filebrowser). These features should be completed by the next version of

this thesis.

 13

Results

 As discussed previously, this project ended up with two separate implementations. The

first was a more finished product written with a PHP backend, and the second utilizing Node.js

with various other supporting JavaScript libraries. The first codebase, while successfully

interfacing with the keyboard and mic and having a prettier user interface, suffers from the few

second delays caused by client-side encoding. The second codebase, while only a skeleton of a

project, successfully does away entirely with client-side encoding, streaming the binary to a

Node server, removing any client delay. The results section will begin by displaying the first,

more completed product.

 The following figure is a screenshot of the finished initial web page.

Figure 14 - First project web page

 14

The background is a CSS linear gradient from white in the upper left to grey in the lower

right, in order to look perhaps a bit more modern than a plain white or something more complex.

To begin, the user would first begin by selecting one of the three options for audio formats.

Figure 15 - Encoding selection

For the purposes of experimentation three options, WAV, MP3, and OGG are given for

output, even though the OGG format ends up with the smallest files, and therefore is the clear

choice. If the user has an external mic, they can change the mic input up in the URL bar.

Figure 16 - Microphone selection

 15

Once the user is ready for recording, they will either press the record button with their

mouse or using a USB foot pedal. The record button, once pressed, will become grey, and the

stop button will become red, until it is pressed. It does this same change once the foot pedal is

pressed or released. This allows for more clarity and a nicer feeling user interface.

Figure 17 - Record and stop buttons

Once the recording has begun, either error messages or the normal success messages will

be output in the Log section.

Figure 18 - Web log

The first three lines in this figure display a successful recording begun, and the last two

lines are printed to the log if a successful recording is completed. Once the recording is

complete, two things take place. The audio blob is uploaded to the PHP server, and an entry

appears in the Recordings section.

 16

Figure 19 - Recorded audio player

A user can adjust value, play, and pause the recent recording, as well as download via the

link generated beneath the player. Once the user has done their recording, the transcriber has a

second interface in order to listen, move, play, pause, delete, or organize the data.

Figure 20 - FileBrowser web interface

Filebrowser hosts a local server that gives a Google Drive-like interface. Simple design

allows for an easy interface for anyone on the transcribing end to use.

 17

 This system works very well, except for the encoding and uploading delay. This delay is

roughly three seconds of encoding and uploading to the server per minute of audio recorded.

This amount of delay does not allow the user to hit record until after it is finished encoding, and

results in lower productivity, which is unacceptable to pathologists. The current delay on

encoding is a problem, and is the reason that work began on a separate, second project.

 The second project is not nearly as advanced and complete as the first. As of present

time, it is very barebones and has yet to have the features of the first project added. Currently, it

lacks the features of having a well-designed user interface, working with a foot pedal, or having

a server-side interface for playback. It does, however, solve the delay problem.

Figure 21 - Second version web page

Once the Record button is pressed, it begins a binary stream to the Express server, and on

that side it collects the stream until the Stop button is pressed. After that, it encodes the collected

stream into an MP3 file on the server side, therefore eliminating encoding delays on the client

 18

side. Future work should see the features of the first project incorporated into the second project,

with redesigned UI, foot pedal support, server side playback, and perhaps a few other features.

Conclusion

 I enjoyed working on this project because it felt, in a way, that I was breaking some new

ground. Plenty of web-based audio recorders have been made before me, and a couple tying in

with keyboard HID devices, but none that I found had implemented all those features with

streaming the audio directly to the server, causing no delay. The summer before my senior year I

had spent doing web development, so it felt nice to be able to work in an area I was a little more

familiar with.

 My uncle, Jason, is an electrical engineer and the president of BuildingReports, so this

also allowed me to get a taste of the higher expectations of independent, contract-like work. A

little more pressure can make things a bit more interesting for sure. Joseph and Jason Kronz’s

push and requests for features gave me a scope and a time I had to work.

 This project almost more than any other showed me a lot about other’s work. Both of my

projects were built on top tons of work others have done, from Node/BinaryJS/Express to simple

Javascript examples of implementing audio recording. This gave me both examples of good

coding practices and extremely lazy (yet efficient) programming. Utilizing a lot of this code also

gave me practice putting different code bases, with my own changes, together. This is a skill I

have to become a master at for my future work in web development, and something I definitely

experienced every day at my internship this last summer.

 In conclusion, I feel like I learned a lot about working with USB’s and audio in the web

browser. I hope browsers continue working on pushing the boundaries of what Javascript is

 19

capable of, while still keeping security a focus. I would have liked to add some more features,

but I feel what I got completed was adequate, and even though it is not a fully-featured product,

it is a solid proof-of-concept and something that can easily be improved upon.

 20

References

1. Naicu, O. (2018, July 13). Simple-web-audio-recorder-demo. Retrieved from

https://github.com/addpipe/simple-web-audio-recorder-demo

2. Altoedge. (n.d.). Infinity Foot Pedals. Retrieved from

http://www.altoedge.com/pedals/vec-infinity-foot-pedals.html

3. Filebrowser. (2019, February 28). Filebrowser. Retrieved from

https://github.com/filebrowser/filebrowser

4. Higuma, Y. (2016, June 11). Web-audio-recorder-js. Retrieved from

https://github.com/higuma/web-audio-recorder-js

5. Khan, M. (2019, April 08). Muaz-khan/WebRTC-Experiment. Retrieved from

https://github.com/muaz-khan/WebRTC-Experiment/tree/master/RecordRTC

6. Poca, G. (2016, September 17). Browser-pcm-stream. Retrieved from

https://github.com/gabrielpoca/browser-pcm-stream

7. ScriptProcessorNode. (2019, March 23). Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API/ScriptProcessorNode

 21

Appendix A - Version 1.0

root

back.php

<?php

// Created by Isaac Kronz -

// Experimental (and functional) backend written the day before

presentation

// ^ previous backend.php is deprecated but is kept because it

may be useful

if (isset($_FILES['thing']))

{

 $uploads_dir = 'uploads/';

 $tmp_name = $_FILES["thing"]["tmp_name"];

 $name = basename($_FILES["thing"]["name"]);

 move_uploaded_file($tmp_name, "$uploads_dir$name");

}

?>

backend.php

<?php

// Currently deprecated but still has useful functionality to

carry over

// to back.php

echo "Hello World";

 22

if ($_SERVER['REQUEST_METHOD'] === 'POST') {

 if (isset($_FILES['thing'])) {

 $errors = [];

 $path = 'uploads/';

 $extensions = ['ogg', 'wav', 'mp3', 'blob'];

/*

 $upload_max_filesize = 10M;

 $post_max_size = 10M;

*/

 $all_files = count($_FILES['thing']['tmp_name']);

 for ($i = 0; $i < $all_files; $i++) {

 $file_name = $_FILES['thing']['name'][$i];

 $file_tmp = $_FILES['thing']['tmp_name'][$i];

 $file_type = $_FILES['thing']['type'][$i];

 $file_size = $_FILES['thing']['size'][$i];

 $file_ext = strtolower(end(explode('.',

$_FILES['thing']['name'][$i])));

 $file = $path . $file_name;

 if (!in_array($file_ext, $extensions)) {

 $errors[] = 'Extension not allowed: ' .

$file_name . ' ' . $file_type;

 }

 /*

 if ($file_size > 2097152) {

 $errors[] = 'File size exceeds limit: ' .

$file_name . ' ' . $file_type;

 }

 23

 */

 if (empty($errors)) {

 move_uploaded_file($file_tmp, $file);

 }

 }

 if ($errors) print_r($errors);

 }

}

index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Isaac Audio Recorder</title>

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <link rel="stylesheet" type="text/css" href="style.css">

 </head>

 <body>

 <h1>Isaac's Audio Recorder</h1>

 <p>Made as my senior project for NNU
NNU CS</p>

 <!-- Selection of audio encoding type -->

 <p>Conversion encoding:

 <select id="encodingTypeSelect">

 <option value="wav">Waveform Audio (.wav)</option>

 <option value="mp3">MP3 (MPEG-1 Audio Layer III)

(.mp3)</option>

 <option value="ogg">Ogg Vorbis (.ogg)</option>

 24

 </select>

 </p>

 <!-- Input section -->

 <div id="controls">

 <button id="recordButton">Record</button>

 <button id="stopButton" disabled>Stop</button>

 </div>

 <div id="formats"></div>

 <h3>Log</h3>

 <pre id="log"></pre>

 <h3>Recordings</h3>

 <ol id="recordingsList">

 <!-- inserting these scripts at the end to be able to use

all the elements in the DOM -->

 <script src="js/WebAudioRecorder.min.js"></script>

 <script src="js/app.js"></script>

 </body>

</html>

launch.sh

#!/bin/bash

Beginning of a script to launch the entire project

as opposed to multiple manual php servers being created

php -S localhost:1000

php.ini

upload_max_filesize = 10M;

post_max_size = 10M;

 25

README.md

Functional WebAudioRecorder/Uploader using

WebAudioRecorder.js

A web audio recorder that supports multiple forms of mics and a

foot pedal.

After recording and encoding the audio, it uploads to a server.

Utilizes [WebAudioRecorder.js](https://github.com/higuma/web-

audio-recorder-js) to record mp3, wav and Vorbis audio on a web

page.

style.css

html {

 background-image: linear-gradient(to bottom right, white,

grey);

}

* {

 padding: 0;

 margin: 0;

}

a {

 color: #337ab7;

}

p {

 margin-top: 1rem;

}

a:hover {

 color:#23527c;

}

a:visited {

 26

 color: #8d75a3;

}

body {

 margin: 1rem;

 padding: 1rem;

 font-family: sans-serif;

 max-width: 21rem;

 margin: 0 auto;

 position: relative;

}

#controls {

 display: flex;

 margin-top: 2rem;

}

/*

#recordButton {

 background: green;

}

*/

button {

 flex-grow: 1;

 height: 2.5rem;

 /*min-width: 1rem;*/

 border: none;

 border-radius: 0.15rem;

 background: #ed341d;

 margin-left: 2px;

 box-shadow: inset 0 -0.15rem 0 rgba(0, 0, 0, 0.2);

 cursor: pointer;

 display: flex;

 justify-content: center;

 align-items: center;

 27

 color:#ffffff;

 font-weight: bold;

 font-size: 1rem;

}

button:hover, button:focus {

 outline: none;

 background: #c72d1c;

}

button::-moz-focus-inner {

 border: 0;

}

button:active {

 box-shadow: inset 0 1px 0 rgba(0, 0, 0, 0.2);

 line-height: 3rem;

}

button:disabled {

 pointer-events: none;

 background: lightgray;

}

button:first-child {

 margin-left: 0;

}

audio {

 display: block;

 width: 100%;

 margin-top: 0.2rem;

}

li {

 list-style: none;

 margin-bottom: 1rem;

}

#formats {

 28

 margin-top: 0.5rem;

 font-size: 80%;

}

js

app.js

// Written by Isaac Kronz and code from the Addpipe demo (link

in README.md)

//webkitURL is deprecated but nevertheless

URL = window.URL || window.webkitURL;

// Pedal Down

document.addEventListener('keyup', function(event) {

 if (event.code == 'KeyM' && event.code == 'KeyM') {

 //alert('Undo!')

 console.log("hi");

 startRecording();

 }

});

// Pedal Up

document.addEventListener('keyup', function(event) {

 if (event.code == 'KeyN' && event.code == 'KeyN') {

 //alert('Undo!')

 console.log("bye");

 stopRecording();

 }

});

 29

/*

var code = "";

window.addEventListener("keyup",function(e) {

 code = (code+String.fromCharCode(e.keyCode ||

e.which)).substr(-11);

 if(code == "mm") {

 window.removeEventListener("keyup",arguments.callee);

 // do stuff here

 }

},false);

*/

// \/ this is doing it on any key being pressed. I don't know

exactly why.

/*

document.onkeypress = function(e) {

 e = e || window.event;

 console.log(e);

 var charCode = (typeof e.which == "number") ? e.which :

e.keyCode;

 if(charCode = "m") {

 startRecording();

 }

 else {

 stopRecording();

 }

 //if(e = "^[n^[n)" {

 // stopRecording();

 //}

 //if (charCode) {

 // alert("Character typed: " +

String.fromCharCode(charCode));

 30

 //}

};

*/

var gumStream; //stream from getUserMedia()

var recorder; //WebAudioRecorder object

var input; //MediaStreamAudioSourceNode we'll be recording

var encodingType; //holds selected encoding for resulting

audio (file)

var encodeAfterRecord = true; // when to encode

var AudioContext = window.AudioContext ||

window.webkitAudioContext;

var audioContext; //new audio context to help us record

var encodingTypeSelect =

document.getElementById("encodingTypeSelect");

var recordButton = document.getElementById("recordButton");

var stopButton = document.getElementById("stopButton");

// Add events to the buttons

recordButton.addEventListener("click", startRecording);

stopButton.addEventListener("click", stopRecording);

function startRecording() {

 console.log("startRecording() called");

 /*

 Simple constraints object, for more advanced features

see

 https://addpipe.com/blog/audio-constraints-getusermedia/

 31

 */

 var constraints = {audio: true, video: false}

navigator.mediaDevices.getUserMedia(constraints).then(function(s

tream) {

 thelog("Succeeded in accessing user media");

 // Create a audio context after getUserMedia is called

 audioContext = new AudioContext();

 //update the format

 /* Unnecessary

 document.getElementById("formats").innerHTML="Format: 2

channel

"+encodingTypeSelect.options[encodingTypeSelect.selectedIndex].v

alue+" @ "+audioContext.sampleRate/1000+"kHz"

 */

 //assign to gumStream for later use

 gumStream = stream;

 /* use the stream */

 input = audioContext.createMediaStreamSource(stream);

 //stop the input from playing back through the speakers

 //input.connect(audioContext.destination)

 //get the encoding

 32

 encodingType =

encodingTypeSelect.options[encodingTypeSelect.selectedIndex].val

ue;

 //disable the encoding selector

 encodingTypeSelect.disabled = true;

 recorder = new WebAudioRecorder(input, {

 workerDir: "js/", // must end with slash

 encoding: encodingType,

 numChannels:2, //2 is the default, mp3 encoding

supports only 2

 onEncoderLoading: function(recorder, encoding) {

 // show "loading encoder..." display

 //thelog("Loading "+encoding+" encoder...");

 },

 onEncoderLoaded: function(recorder, encoding) {

 // hide "loading encoder..." display

 thelog(encoding+" encoder ready");

 }

 });

 recorder.onComplete = function(recorder, blob) {

 thelog("Encoding done");

 createDownloadLink(blob,recorder.encoding);

 encodingTypeSelect.disabled = false;

 }

 recorder.setOptions({

 timeLimit:120,

 encodeAfterRecord:encodeAfterRecord,

 ogg: {quality: 0.5},

 33

 mp3: {bitRate: 160}

 });

 //start the recording process

 recorder.startRecording();

 thelog("Recording");

 }).catch(function(err) {

 //enable the record button if getUSerMedia() fails

 recordButton.disabled = false;

 stopButton.disabled = true;

 });

 //disable the record button

 recordButton.disabled = true;

 stopButton.disabled = false;

}

function stopRecording() {

 console.log("stopRecording() called");

 //stop microphone access

 gumStream.getAudioTracks()[0].stop();

 //disable the stop button

 stopButton.disabled = true;

 recordButton.disabled = false;

 //tell the recorder to finish the recording (stop recording

+ encode the recorded audio)

 34

 recorder.finishRecording();

 thelog('Recording finished');

}

function createDownloadLink(blob,encoding) {

 //const theurl = 'backend.php';

 const theurl = 'back.php';

 const fd = new FormData();

 //fd.append('fname', 'test.wav');

 fd.append('thing', blob);

 console.log(fd.get('thing'));

 // This may be where the issue lies, but I'm 99% sure it's

the php

 fetch(theurl, {

 method: 'POST',

 body: fd

 }).then(response => {

 console.log(response);

 });

 var url = URL.createObjectURL(blob);

 var au = document.createElement('audio');

 var li = document.createElement('li');

 var link = document.createElement('a');

 // Add controls to the audio thing

 au.controls = true;

 au.src = url;

 35

 // Create link a + blob

 link.href = url;

 link.download = new Date().toISOString() + '.'+encoding;

 link.innerHTML = link.download;

 // Add the new audio and a elements to the list

 li.appendChild(au);

 li.appendChild(link);

 // Add the li element to the ordered list

 recordingsList.appendChild(li);

}

// This adds to the log and the list

function thelog(e, data) {

 log.innerHTML += "\n" + e + " " + (data || '');}

 36

Appendix B - Version 2.0

root

app.js

// Written by Gabriel Poca, additions by Isaac Kronz

// Sets up Express and Binary.js

// Takes the binary stream as input and uses filewriter to

create a file

var express = require('express');

var BinaryServer = require('binaryjs').BinaryServer;

var fs = require('fs');

var wav = require('wav');

var port = 3700;

var outFile = 'demo.wav';

var app = express();

app.set('views', __dirname + '/tpl');

app.set('view engine', 'jade');

app.engine('jade', require('jade').__express);

app.use(express.static(__dirname + '/public'))

app.get('/', function(req, res){

 res.render('index');

});

app.listen(port);

console.log('server open on port ' + port);

 37

binaryServer = BinaryServer({port: 9001});

binaryServer.on('connection', function(client) {

 console.log('new connection');

 var fileWriter = new wav.FileWriter(outFile, {

 channels: 1,

 sampleRate: 48000,

 bitDepth: 16

 });

 client.on('stream', function(stream, meta) {

 console.log('new stream');

 stream.pipe(fileWriter);

 stream.on('end', function() {

 fileWriter.end();

 console.log('wrote to file ' + outFile);

 });

 });

});

package.json

{

 "name": "MicStreamToWav",

 "version": "0.0.0",

 "description": "Stream microphone pcm data to server and save

on wav file.",

 "scripts": {

 "start": "node app.js"

 },

 38

 "dependencies": {

 "binaryjs": "^0.2.1",

 "express": "^4.16.4",

 "jade": "^1.11.0",

 "wav": "^1.0.2"

 },

 "author": "gabrielpoca"

}

README.md

Made by Isaac Kronz using a lot of code from Gabriel Poca's

Github.

Instructions:

prompt@username~$ node app.js

Browser: `http://localhost:3700`

public

recorder.js

// Written by Gabriel Poca, with additions from Isaac Kronz

// Sets up the client side of the Javascript, creating a

binary.js tunnel

//

(function(window) {

 var client = new BinaryClient('ws://localhost:9001');

 client.on('open', function() {

 39

 window.Stream = client.createStream();

 if (!navigator.getUserMedia)

 navigator.getUserMedia = navigator.getUserMedia ||

navigator.webkitGetUserMedia ||

 navigator.mozGetUserMedia || navigator.msGetUserMedia;

 if (navigator.getUserMedia) {

 navigator.getUserMedia({audio:true}, success, function(e) {

 alert('Error capturing audio.');

 });

 } else alert('getUserMedia not supported in this browser.');

 var recording = false;

 window.startRecording = function() {

 recording = true;

 }

 window.stopRecording = function() {

 recording = false;

 window.Stream.end();

 }

 function success(e) {

 audioContext = window.AudioContext ||

window.webkitAudioContext;

 context = new audioContext();

 // the sample rate is in context.sampleRate

 audioInput = context.createMediaStreamSource(e);

 40

 var bufferSize = 2048;

 recorder = context.createScriptProcessor(bufferSize, 1, 1);

 recorder.onaudioprocess = function(e){

 if(!recording) return;

 console.log ('recording');

 var left = e.inputBuffer.getChannelData(0);

 window.Stream.write(convertoFloat32ToInt16(left));

 }

 audioInput.connect(recorder)

 recorder.connect(context.destination);

 }

 function convertoFloat32ToInt16(buffer) {

 var l = buffer.length;

 var buf = new Int16Array(l)

 while (l--) {

 buf[l] = buffer[l]*0xFFFF; //convert to 16 bit

 }

 return buf.buffer

 }

 });

})(this);

tpl

index.jade

doctype

html

 head

 41

 title= "Isaac's Binary Stream"

script(src="https://cdn.jsdelivr.net/binaryjs/0.2.1/binary.min.j

s")

 style.

 html {

 background-image: linear-gradient(to bottom

right, white, grey);

 }

 body {

 text-align: center;

 margin-top: 300px;

 margin-bottom: 300px;

 }

 p {

 font-size: 36;

 }

 body

 div

 h1 Isaac's Recorder V2

 button(onclick="startRecording()") Record

 button(onclick="stopRecording()") Stop

 script(src="recorder.js")

style.css

html {

 background-image: linear-gradient(to bottom right, white,

grey);

}

		Barry Myers <blmyers@nnu.edu>, sriley@nnu.edu
	2019-05-09T22:26:59+0000
	Barry Myers: 43°33′47″N 116°33′54″W (102.0 m), sriley@nnu.edu: 43°34′4″N 116°37′5″W (65.0 m)
	Certify the signatures of Barry Myers <blmyers@nnu.edu>, sriley@nnu.edu

